Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T00:53:06.725Z Has data issue: false hasContentIssue false

Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology

Published online by Cambridge University Press:  19 January 2012

Hyungsoon Im
Affiliation:
Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Nathan J. Wittenberg
Affiliation:
Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Nathan C. Lindquist
Affiliation:
Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Sang-Hyun Oh*
Affiliation:
Laboratory of Nanostructures and Biosensing, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
*
a)Address all correspondence to this author. e-mail: sang@umn.edu
Get access

Abstract

Although atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultrathin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ahonen, M., Pessa, M., and Suntola, T.: A study of ZnTe films grown on glass substrates using an atomic layer evaporation method. Thin Solid Films 65, 301 (1980).CrossRefGoogle Scholar
2.Leskela, M. and Ritala, M.: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548 (2003).CrossRefGoogle ScholarPubMed
3.Puurunen, R.L.: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).CrossRefGoogle Scholar
4.George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).CrossRefGoogle ScholarPubMed
5.Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., Brazier, M., Buehler, M., Cappellani, A., Chau, R., Choi, C-H., Ding, G., Fischer, K., Ghani, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., He, J., Hicks, J., Huessner, R., Ingerly, D., Jain, P., James, R., Jong, L., Joshi, S., Kenyon, C., Kuhn, K., Lee, K., Liu, H., Maiz, J., McIntyre, B., Moon, P., Neirynck, J., Pae, S., Parker, C., Parsons, D., Prasad, C., Pipes, L., Prince, M., Ranade, P., Reynolds, T., Sandford, J., Shifren, L., Sebastian, J., Seiple, J., Simon, D., Sivakumar, S., Smith, P., Thomas, C., Troeger, T., Vandervoorn, P., Williams, S., and Zawadzki, K.: A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging, in Proceedings of the IEDM Technical Digest, 2007, pp. 247250.Google Scholar
6.Bohr, M.T., Chau, R.S., Ghani, T., and Mistry, K.: The high-k solution. IEEE Spectr. 44, 29 (2007).CrossRefGoogle Scholar
7.Puurunen, R.L.: Growth per cycle in atomic layer deposition: A theoretical model. Chem. Vap. Deposition 10, 124 (2004).CrossRefGoogle Scholar
8.Lim, B.S., Rahtu, A., and Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749 (2003).CrossRefGoogle ScholarPubMed
9.Maarit Kariniemi, M., Niinistö, J., Hatanpää, T., Kemell, M., Sajavaara, T., Ritala, M., and Leskelä, M.: Plasma-enhanced atomic layer deposition of silver thin films. Chem. Mater. 23, 2901 (2011).CrossRefGoogle Scholar
10.Ritala, M. and Leskela, M.: Handbook of Thin Film Materials (Academic Press, San Diego, 2001).Google Scholar
11.Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138 (2002).CrossRefGoogle Scholar
12.Kim, H.: Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B 21, 2231 (2003).CrossRefGoogle Scholar
13.Niinisto, L., Paivasaari, J., Niinisto, J., Putkonen, M., and Nieminen, M.: Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys. Status Solidi A 201, 1443 (2004).CrossRefGoogle Scholar
14.Knez, M., Niesch, K., and Niinistoe, L.: Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425 (2007).CrossRefGoogle Scholar
15.Kim, H., Lee, H-B-R., and Maeng, W.J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563 (2009).CrossRefGoogle Scholar
16.Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
17.Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).CrossRefGoogle Scholar
18.Barnes, W.L., Dereux, A., and Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824 (2003).CrossRefGoogle ScholarPubMed
19.Atwater, H.: The promise of plasmonics. Sci. Am. 296, 56 (2007).CrossRefGoogle ScholarPubMed
20.Polman, A.: Plasmonics applied. Science 322, 868 (2008).CrossRefGoogle ScholarPubMed
21.Lal, S., Link, S., and Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641 (2007).CrossRefGoogle Scholar
22.Pelton, M., Aizpurua, J., and Bryant, G.: Metal-nanoparticle plasmonics. Laser Photonics Rev. 2, 136 (2008).CrossRefGoogle Scholar
23.Novotny, L.: From near-field optics to optical antennas. Phys. Today 64, 47 (2011).CrossRefGoogle Scholar
24.Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1986).Google Scholar
25.Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462 (2008).CrossRefGoogle ScholarPubMed
26.Cooper, M.A.: Advances in membrane receptor screening and analysis. J. Mol. Recognit. 17, 286 (2004).CrossRefGoogle Scholar
27.Armstrong, S.H. Jr. and Budka, M.J.E.: Preparation and properties of serum and plasma proteins; the refractive properties of the proteins of human plasma and certain purified fractions. J. Am. Chem. Soc. 69, 1747 (1947).CrossRefGoogle ScholarPubMed
28.Voros, J.: The density and refractive index of adsorbing protein layers. Biophys. J. 87, 553 (2004).CrossRefGoogle ScholarPubMed
29.Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., and Yee, S.S.: Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636 (1998).CrossRefGoogle Scholar
30.Whitney, A.V., Elam, J.W., Zou, S.L., Zinovev, A.V., Stair, P.C., Schatz, G.C., and Van Duyne, R.P.: Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition. J. Phys. Chem. B 109, 20522 (2005).CrossRefGoogle ScholarPubMed
31.Im, H., Lindquist, N.C., Lesuffleur, A., and Oh, S.H.: Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 4, 947 (2010).CrossRefGoogle ScholarPubMed
32.Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., and Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998).CrossRefGoogle Scholar
33.Brolo, A.G., Gordon, R., Leathem, B., and Kavanagh, K.L.: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813 (2004).CrossRefGoogle ScholarPubMed
34.Dahlin, A., Zäch, M., Rindzevicius, T., Käll, M., Sutherland, D.S., and Höök, F.: Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc. 127, 5043 (2005).CrossRefGoogle ScholarPubMed
35.Tetz, K.A., Pang, L., and Fainman, Y.: High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 31, 1528 (2006).CrossRefGoogle ScholarPubMed
36.Stewart, M.E., Mack, N.H., Malyarchuk, V., Soares, J., Lee, T.W., Gray, S.K., Nuzzo, R.G., and Rogers, J.A.: Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. U.S.A. 103, 17143 (2006).CrossRefGoogle ScholarPubMed
37.Lesuffleur, A., Im, H., Lindquist, N.C., and Oh, S.H.: Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl. Phys. Lett. 90, 243110 (2007).CrossRefGoogle Scholar
38.Eftekhari, F., Escobedo, C., Ferreira, J., Duan, X., Girotto, E.M., Brolo, A.G., Gordon, R., and Sinton, D.: Nanoholes as nanochannels: Flow-through plasmonic sensing. Anal. Chem. 81, 4308 (2009).CrossRefGoogle ScholarPubMed
39.Im, H., Lesuffleur, A., Lindquist, N.C., and Oh, S.H.: Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal. Chem. 81, 2854 (2009).CrossRefGoogle Scholar
40.Lindquist, N.C., Lesuffleur, A., Im, H., and Oh, S.H.: Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9, 382 (2009).CrossRefGoogle ScholarPubMed
41.Yang, X.D., Chen, C.J., Husko, C.A., and Wong, C.W.: Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition. Appl. Phys. Lett. 91, 161114 (2007).CrossRefGoogle Scholar
42.Qian, L.H., Shen, B., Qin, G.W.W., and Das, B.: Widely tuning optical properties of nanoporous gold-titania core-shells. J. Chem. Phys. 134, 014707 (2011).CrossRefGoogle ScholarPubMed
43.Jeanmaire, D.L. and Van Duyne, R.P.: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1 (1977).CrossRefGoogle Scholar
44.Dieringer, J.A., McFarland, A.D., Shah, N.C., Stuart, D.A., Whitney, A.V., Yonzon, C.R., Young, M.A., Zhang, X.Y., and Van Duyne, R.P.: Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9 (2006).CrossRefGoogle ScholarPubMed
45.Groner, M.D., George, S.M., McLean, R.S., and Carcia, P.F.: Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 88, 051907 (2006).CrossRefGoogle Scholar
46.Groner, M.D., Fabreguette, F.H., Elam, J.W., and George, S.M.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639 (2004).CrossRefGoogle Scholar
47.Whitney, A.V., Elam, J.W., Stair, P.C., and Van Duyne, R.P.: Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. C 111, 16827 (2007).CrossRefGoogle Scholar
48.Sung, J., Kosuda, K.M., Zhao, J., Elam, J.W., Spears, K.G., and Van Duyne, R.P.: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation. J. Phys. Chem. C 112, 5707 (2008).CrossRefGoogle Scholar
49.Barrios, C.A., Malkovskiy, A.V., Kisliuk, A.M., Sokolov, A.P., and Foster, M.D.: Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J. Phys. Chem. C 113, 8158 (2009).CrossRefGoogle Scholar
50.Zhang, X.Y., Zhao, J., Whitney, A.V., Elam, J.W., and Van Duyne, R.P.: Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304 (2006).CrossRefGoogle ScholarPubMed
51.Nagpal, P., Lindquist, N.C., Oh, S.H., and Norris, D.J.: Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009).CrossRefGoogle ScholarPubMed
52.Im, H., Lee, S.H., Wittengerg, N.J., Johnson, T.W., Lindquist, N.C., Nagpal, P., Norris, D.J., and Oh, S.H.: Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5, 6244 (2011).CrossRefGoogle ScholarPubMed
53.George, S.M., Ott, A.W., and Klaus, J.W.: Surface chemistry for atomic layer growth. J. Phys. Chem. 100, 13121 (1996).CrossRefGoogle Scholar
54.Haynes, C.L., McFarland, A.D., and Van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Anal. Chem. 77, 338A (2005).CrossRefGoogle Scholar
55.Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., and Feld, M.S.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).CrossRefGoogle Scholar
56.Nie, S.M. and Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997).CrossRefGoogle ScholarPubMed
57.Im, H., Bantz, K.C., Lindquist, N.C., Haynes, C.L., and Oh, S.H.: Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 10, 2231 (2010).CrossRefGoogle ScholarPubMed
58.Hausmann, D., Becker, J., Wang, S.L., and Gordon, R.G.: Rapid vapor deposition of highly conformal silica nanolaminates. Science 298, 402 (2002).CrossRefGoogle ScholarPubMed
59.Im, H., Wittenberg, N.J., Lesuffleur, A., Lindquist, N.C., and Oh, S.H.: Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688 (2010).CrossRefGoogle ScholarPubMed
60.Keller, C.A. and Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397 (1998).CrossRefGoogle ScholarPubMed
61.Anderson, T.H., Min, Y., Weirich, K.L., Zeng, H., Fygenson, D., and Israelachvili, J.N.: Formation of supported bilayers on silica substrates. Langmuir 25, 6997 (2009).CrossRefGoogle ScholarPubMed
62.Wittenberg, N.J., Im, H., Johnson, T.W., Xu, X., Warrington, A.E., Rodriguez, M., and Oh, S.H.: Facile assembly of micro- and nanoarrays for sensing with natural cell membranes. ACS Nano 5, 7555 (2011).CrossRefGoogle ScholarPubMed
63.Mager, M.D., Almquist, B., and Melosh, N.A.: Formation and characterization of fluid lipid bilayers on alumina. Langmuir 24, 12734 (2008).CrossRefGoogle ScholarPubMed
64.Frank, M.M., Wilk, G.D., Starodub, D., Gustafsson, T., Garfunkel, E., Chabal, Y.J., Grazul, J., and Muller, D.A.: HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Appl. Phys. Lett. 86, 152904 (2005).CrossRefGoogle Scholar
65.Standridge, S.D., Schatz, G.C., and Hupp, J.T.: Toward plasmonic solar cells: Protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25, 2596 (2009).CrossRefGoogle ScholarPubMed