Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T07:05:07.628Z Has data issue: false hasContentIssue false

Turbulence in the Diffuse Interstellar Medium

Published online by Cambridge University Press:  21 December 2011

Edith Falgarone
Affiliation:
LERMA-LRA, Ecole Normale Supérieure & Observatoire de Paris, Paris, France email: edith.falgarone@ens.fr
Benjamin Godard
Affiliation:
CAB/CSIC, Madrid, Spain, email: bgodard@cab.inta-csic.es
Pierre Hily-Blant
Affiliation:
IPAG, Grenoble, France, email: pierre.hily-blant@obs.ujf-grenoble.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffuse interstellar medium (ISM) hosts the first steps of interstellar chemistry and the seeds of dense structures. Since its turbulent pressure by far exceeds its thermal pressure, turbulence must play a prominent role in its evolution. Fed at galactic scales, turbulent energy cascades down to the dissipation scales, but as in both laboratory and atmospheric turbulence, it does so in an intermittent way : only a tiny fraction of the small-scales is fed by the turbulent cascade, so that dissipation occurs in bursts. In diffuse molecular clouds, where they can be observed, the signatures of intermittency are: (1) the non-Gaussian statistics of velocity increments, and (2) the existence of coherent structures of intense velocity-shear that appear to channel the large-scale turbulent energy down to milliparsec scales. Attempts at modelling the warm chemistry triggered in the diffuse ISM by bursts of turbulent dissipation are promising : in this framework, the so far unexplained molecular richness observed in this medium is naturally understood, in particular its CH+, HCO+ and CO abundances. Turbulent dissipation is also likely at the origin of the H2 rotational line emission of the diffuse ISM and of a significant fraction of its [C II] emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

de Avillez, M. A. & Breitschweirdt, D. 2005 A&A 436 585Google Scholar
Anselmet, F., Antonia, R. A., & Danaila, L. 2001, Planetary & Space Sciences, 49, 1177CrossRefGoogle Scholar
Audit, E. & Hennebelle, P. 2005, A&A, 433, 1Google Scholar
Barriault, L., Joncas, G., Falgarone, E. et al. 2010 MNRAS 406 2713CrossRefGoogle Scholar
Begum, A., Stanimirovic, S., Goss, M., Heiles, C., Pavkovich, A., & Hennebelle, P. 2010 ApJ 725 1779CrossRefGoogle Scholar
Cox, D. 2005, ARAA 43, 337CrossRefGoogle Scholar
Crane, P., Lambert, D. L., & Sheffer, Y. 1995 ApJS 99, 107CrossRefGoogle Scholar
Crutcher, R., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. 2010, ApJ, 725, 466CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARAA, 42, 211CrossRefGoogle Scholar
Falgarone, E., Phillips, T. G., & Walker, C. K. 1991, ApJ, 378, 186CrossRefGoogle Scholar
Falgarone, E., Hily-Blant, P., & Levrier, F., 2004, Ap&SS, 292, 89Google Scholar
Falgarone, E., Verstraete, L., Pineau des Forêts, G., & Hily-Blant, P. 2005, A&A, 433, 997Google Scholar
Falgarone, E., Pineau des Forêts, G., Hily-Blant, P., & Schilke, P. 2006, A&A, 452, 511Google Scholar
Falgarone, E., Pety, J., & Hily-Blant, P. 2009, A&A, 507, 355Google Scholar
Falgarone, E., Ossenkopf, V., Gerin, M., et al. , 2010a, A&A 518, L118Google Scholar
Falgarone, E., Godard, B., Cernicharo, J. et al. , 2010b, A&A 521, L15Google Scholar
Federrath, C., Duval, J., Klessen, R. S., et al. , 2010, A&A 512, 81Google Scholar
Field, G., Goldsmith, D., & Habing, H. 1969 ApJ 155, L149CrossRefGoogle Scholar
Fitzpatrick, E. L. & Spitzer, L. 1997, ApJ, 745, 623CrossRefGoogle Scholar
Frisch, U. 1995, Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press, CambridgeCrossRefGoogle Scholar
Gerin, M., de Luca, M., Goicoechea, J. et al. , 2010 A&A 521, L16Google Scholar
Godard, B., Falgarone, E., & Pineau des Forêts, G. 2009, A&A, 495, 847Google Scholar
Godard, B., Falgarone, E., Gerin, M., Hily-Blant, P., & de Luca, M., 2010, A&A, 520, A20Google Scholar
Godard, B., Falgarone, E., Gerin, M., et al. , 2011, submitted to A&AGoogle Scholar
Goldsmith, P. F., Heyer, M., Narayanan, G., et al. , 2008, ApJ, 680, 428CrossRefGoogle Scholar
Goldsmith, P. F., Velusamy, T., Li, D. & Langer, W. D. 2010, ApJ, 715, 1370CrossRefGoogle Scholar
Gredel, R., 1997 A&A 320, 929Google Scholar
Hartmann, J. 1904 ApJ 19, 268CrossRefGoogle Scholar
Haud, U. & Kalberla, P. M. W. 2007, A&A, 466, 555Google Scholar
Heiles, C. & Troland, T. 2003 ApJ 586 1067CrossRefGoogle Scholar
Heithausen, A. 2004, ApJ, 606, L13CrossRefGoogle Scholar
Heithausen, A. 2006, A&A, 450, 193Google Scholar
Heithausen, A., Bertoldi, F., & Bensch, F. 2002, A&A, 383, 591Google Scholar
Hewitt, J. W., Rho, J., Andersen, M., & Reach, W. T. 2009 ApJ 694, 1266CrossRefGoogle Scholar
Hily-Blant, P. & Falgarone, E. 2007, A&A, 469, 173Google Scholar
Hily-Blant, P., Falgarone, E., & Pety, J. 2008, A&A, 481, 367Google Scholar
Hily-Blant, P. & Falgarone, E., 2009, A&A, 500, L29 (HF09)Google Scholar
Jenkins, E. B. & Tripp, T. M. 2011, ApJ, 734, 65CrossRefGoogle Scholar
Joulain, K., Falgarone, E., Pineau des Forêts, G. P., & Flower, D. 1998, A&A, 340, 241Google Scholar
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009 A&A 508, L35Google Scholar
Kolmogorov, A. N. 1941, Dokl. Akad. Nauk SSSR, 26, 115Google Scholar
Kolmogorov, A. N. 1962, J. Fluid Mech., 13, 82CrossRefGoogle Scholar
Landau, L. E. & Lifchitz, E. M. 1959, Fluid Mechanics, Pergamon Press, OxfordGoogle Scholar
Lis, D. C., Pety, J., Phillips, T. G., & Falgarone, E. 1996, ApJ, 463, 623CrossRefGoogle Scholar
Liszt, H. S. & Lucas, R. 1998, A&A, 339, 561Google Scholar
Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Phys. Rev. Lett., 80, 2754CrossRefGoogle Scholar
Menten, K., Wyrowski, F., Belloche, A., et al. , 2011 A&A 525, 77Google Scholar
Men'shchikov, A., André, P., Didelon, P., et al. , 2010 A&A 518 L103Google Scholar
Mininni, P. D., Alexakis, A., & Pouquet, A. 2006, Phys. Rev. E, 74, 6303CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Joncas, G., Falgarone, E., & Boulanger, F., 2003, A&A, 411, 109Google Scholar
Miville-Deschênes, M.-A., Martin, P., Abergel, A., et al. , 2010, A&A, 518 L104Google Scholar
Miville-Deschênes, M.-A. & Lagache, , 2005, ApJS 157, 302CrossRefGoogle Scholar
Moffatt, H. K., Kida, S., & Ohkitani, K. 1994, J. Fluid Mech., 259, 241CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004, J. Fluid Mech., 513, 111CrossRefGoogle Scholar
Pety, J. & Falgarone, E. 2003, A&A, 412, 417Google Scholar
Politano, H. & Pouquet, A. 1995 Phys. Rev. E, 52, 636CrossRefGoogle Scholar
Porter, D. H., Pouquet, A., & Woodward, P. R. 2002, Phys. Rev. E, 66, 026301CrossRefGoogle Scholar
Sakamoto, S. & Sunada, K. 2003, ApJ, 594, 340CrossRefGoogle Scholar
Scalo, J. & Elmegreen, B. G. 2004, ARAA, 42, 275CrossRefGoogle Scholar
She, Z.-S. & Levêque, E. 1994, Phys. Rev. Lett. 72, 336CrossRefGoogle Scholar
Snow, T. P. & McCall, B. J. 2006, ARAA, 44, 367CrossRefGoogle Scholar
Sonnentrucker, P., Welty, D. E., Thorburn, J. A. & York, D. G. 2007 ApJS 168 58CrossRefGoogle Scholar
Sreenivasan, K. R., Ramshankar, R., & Méneveau, C. 1989, Proc. R. Soc. Lond. A, 421, 79Google Scholar
Vestuto, J. G., Ostriker, E. C., & Stone, J. M. 2003, ApJ, 590, 858CrossRefGoogle Scholar
Weselak, T., Galazutdinov, G., Musaev, F. & Krelowski, J., 2008 A&A 479 149Google Scholar