Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T08:15:06.697Z Has data issue: false hasContentIssue false

AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

Published online by Cambridge University Press:  05 December 2011

Rubén Sánchez-Janssen
Affiliation:
ESO, Alonso de Córdova 3107, Santiago, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood–especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (−18 < Mi < −14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Barazza, F. D., et al. 2009, A&A, 508, 665BGoogle Scholar
Blanton, M., et al. 2005, AJ, 129, 2562BCrossRefGoogle Scholar
Blanton, M. R., Eisenstein, D., Hogg, D. W., & Zehavi, I. 2006, ApJ, 645, 977BCrossRefGoogle Scholar
CidAAAAFernandes, R., Mateus, A., Sodré, L., Stasinska, G., & Gomes, J. M. 2005, MNRAS, 358, 363CCrossRefGoogle Scholar
Geha, M., Blanton, M. R., Masjedi, M., & West, A. A. 2006, ApJ, 653, 240GCrossRefGoogle Scholar
GilAAAAdeAAAAPaz, A., Madore, B. F., & Pevunova, O. 2003, ApJS, 147, 29GGoogle Scholar
Henriques, B. M., Bertone, S., & Thomas, P. A. 2008, MNRAS, 383, 1649HCrossRefGoogle Scholar
Huertas-Company, M., Rouan, D., Tasca, L., Soucail, G. & LeAAAAFèvre, O. 2008, A&A, 478, 971HGoogle Scholar
Hunter, D. A. & Elmegreen, B. G. 2006, ApJS, 162, 49HCrossRefGoogle Scholar
Leroy, A., Bolatto, A. D., Simon, J. D., & Blitz, L. 2005, ApJ, 625, 763LCrossRefGoogle Scholar
Martin, D. C., et al. 2007, ApJS, 173, 415MCrossRefGoogle Scholar
McGaugh, S. S., Schombert, J. M., Bothun, G. D., & deAAAABlok, W. J. G. 2000, ApJ, 533L, 99MCrossRefGoogle Scholar
Mollá, M., García-Vargas, M. L., & Bressan, A. 2009, MNRAS, 398, 451MCrossRefGoogle Scholar
Sánchez-Janssen, R., Aguerri, J., Alfonso, L., & Muñoz-Tuñón, C. 2008, ApJ, 679L, 77SCrossRefGoogle Scholar
Sánchez-Janssen, R., Méndez-Abreu, J., & Aguerri, J. A. L. 2010, MNRAS, 406L, 65SCrossRefGoogle Scholar
Sawala, T., Guo, Q., Scannapieco, C., Jenkins, A., & White, S. D. M. 2010, arXiv:1003.0671Google Scholar
Schombert, J. M. 2006, AJ, 131, 296SCrossRefGoogle Scholar