Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:14:32.163Z Has data issue: false hasContentIssue false

3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

Published online by Cambridge University Press:  05 December 2011

Philippe Amram*
Affiliation:
Laboratoire d'Astrophysique de Marseille, 38 rue Frédéric Joliot-Curie, 13388 Marseille Cedex 13, France email: philippe.amram@oamp.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation-curve decompositions, nature and formation of bulges and disks components.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Amram, P., Sullivan, W. T. III, Balkowski, C. et al. , 1993, ApJL, 403, 59CrossRefGoogle Scholar
Bershady, M. A., Verheijen, M. A. W., Westfall, K. B. et al. , 2010a, ApJ, 716, 198CrossRefGoogle Scholar
Bershady, M. A., Verheijen, M. A. W., Westfall, K. B., et al. , 2010b, ApJ, 716, 234CrossRefGoogle Scholar
Blais-Ouellette, S., Amram, P., Carignan, C et al. , 2004, A&A, 420, 147Google Scholar
Blais-Ouellette, S., Carignan, C., Amram, P., & Coté, S., 1999, AJ, 118, 2123CrossRefGoogle Scholar
Blanc, G. A., Gebhardt, K., Heiderman, A., et al. , 2010, ASPC, 432, 180Google Scholar
Blasco-Herrera, J., Fathi, K., Beckman, J., et al. , 2010, MNRAS, 407, 2519CrossRefGoogle Scholar
Bournaud, F., Duc, P-A, Brinks, E., et al. , 2007, Science, 316, 1166CrossRefGoogle Scholar
Chemin, L., Balkowski, C., Cayatte, V., et al. , 2006, MNRAS, 366, 812CrossRefGoogle Scholar
Chemin, L., Carignan, C., & Amram, P., 2008, ASPC, 390, 294Google Scholar
Chemin, L., Cayatte, V., Balkowski, C., et al. , 2005, A&A, 436, 469Google Scholar
Chemin, L. & Hernandez, O., 2009, A&AL, 499, 25Google Scholar
Daigle, O., 2010, PhD Dissertation, Universits de Montréal et de ProvenceGoogle Scholar
Dicaire, I., Carignan, C., Amram, P., et al. , 2008, MNRAS, 385, 553CrossRefGoogle Scholar
Epinat, B., Amram, P., & Marcelin, M., 2008, MNRAS, 390, 466Google Scholar
Fathi, K, BeckmanJ., E. J., E., Piñol-Ferrer, N. et al. , 2009, ApJ, 704, 1657CrossRefGoogle Scholar
Fellgett, P., 1958, Le Journal de Physique et le Radium, 19, 187CrossRefGoogle Scholar
Ganda, K., Falcón-Barroso, J., Peletier, R. F., et al. , 2006, MNRAS, 367, 46CrossRefGoogle Scholar
Ganda, K., Peletier, R. F., McDermidR., M. R., M., et al. , 2007, MNRAS, 380, 506CrossRefGoogle Scholar
Hernandez, O., Carignan, C., Amram, P., et al. , 2005, MNRAS, 360, 1201CrossRefGoogle Scholar
Ostlin, G., Amram, P., Bergvall, N, et al. 2001, A&A, 374, 800Google Scholar
Peletier, R., Ganda, F., Falcon-Barroso, J. et al. , 2008, IAUS, 245, 271Google Scholar
Plana, H., Boulesteix, J., Amram, P., et al. , 1998, A&AS, 128, 75Google Scholar
Rampazzo, R., Plana, H., Amram, P., et al. , 2005, MNRAS, 346, 1177CrossRefGoogle Scholar
Rampazzo, R., Plana, H., Longhetti, M., et al. , 2003, MNRAS, 343, 819CrossRefGoogle Scholar
Repetto, P., Rosado, M., Gabbasov, R., et al. , 2010, AJ, 139, 1600CrossRefGoogle Scholar
Rosales-Ortega, F. F., Kennicutt, R. C., Sánchez, S. F., et al. , 2010, MNRAS, 405, 735Google Scholar
Russeil, D., Georgelin, Y. M., Amram, P., et al. , 1998, PASA, 15, 9CrossRefGoogle Scholar
Sánchez, S. F., Rosales-Ortega, F. F., KennicuttR., C. R., C., et al. , 2011, MNRAS, 410, 313CrossRefGoogle Scholar
Sánchez, S. F., et al. , 2010, The CALIFA Survey Red BookGoogle Scholar
Seigar, M., Ho, L. C., Barth, A. J., et al. , 2006, AAS, 38, 1190Google Scholar
Spano, M., Marcelin, M., Amram, P., et al. , 2008, MNRAS, 383, 297CrossRefGoogle Scholar
Torres-Flores, S., Mendes de Oliveira, C., Amram, P., et al. , 2010, A&A, 521, 59Google Scholar
vanAAAAderAAAAKruit, P. C. & Freeman, K. C., 1984, ApJ, 278, 81CrossRefGoogle Scholar
Walter, F., Brinks, E., deAAAABlok, E., et al. , 2008, AJ, 136, 2563CrossRefGoogle Scholar