Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T04:51:41.627Z Has data issue: false hasContentIssue false

Tidal dynamics of transiting exoplanets

Published online by Cambridge University Press:  10 November 2011

Daniel C. Fabrycky*
Affiliation:
UCO/Lick University of California Santa Cruz, CA 95064 email: daniel.fabrycky@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Barker, A. J. & Ogilvie, G. I. 2009, MNRAS, 395, 2268CrossRefGoogle Scholar
Bate, M. R., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505CrossRefGoogle Scholar
Burrows, A., Guillot, T., Hubbard, W. B., Marley, M. S., Saumon, D., Lunine, J. I., & Sudarsky, D. 2000, ApJL, 534, L97CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Cumming, A., Butler, R. P., Marcy, G. W., Vogt, S. S., Wright, J. T., & Fischer, D. A. 2008, PASP, 120, 531CrossRefGoogle Scholar
Faber, J. A., Rasio, F. A., & Willems, B. 2005, Icarus, 175, 248CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Fabrycky, D. C. & Winn, J. N. 2009, ApJ, 696, 1230CrossRefGoogle Scholar
Ford, E. B. & Rasio, F. A. 2008, ApJ, 686, 621CrossRefGoogle Scholar
Foucart, F. & Lai, D. 2011, MNRAS, 234Google Scholar
Gaudi, B. S., Seager, S., & Mallen-Ornelas, G. 2005, ApJ, 623, 472CrossRefGoogle Scholar
Goldreich, P. & Schubert, G. 1967, ApJ, 150, 571CrossRefGoogle Scholar
Gaudi, B. S. & Winn, J. N. 2007, ApJ, 655, 550CrossRefGoogle Scholar
Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425CrossRefGoogle Scholar
Gu, P.-G., Lin, D. N. C., & Bodenheimer, P. H. 2003, ApJ, 588, 509CrossRefGoogle Scholar
Guillochon, J., Ramirez-Ruiz, E., & Lin, D. N. C. 2011, ApJ, 732, id.74CrossRefGoogle Scholar
Howe, R. 2009, Living Reviews in Solar Physics, 6, 1CrossRefGoogle Scholar
Irwin, J. & Bouvier, J. 2009, in IAU Symposium, Vol. 258, ed. Mamajek, E. E., Soderblom, D. R., & Wyse, R. F. G., 363CrossRefGoogle Scholar
Jackson, B., Barnes, R., & Greenberg, R. 2009, ApJ, 698, 1357CrossRefGoogle Scholar
Jurić, M. & Tremaine, S. 2008, ApJ, 686, 603CrossRefGoogle Scholar
Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 231Google Scholar
Lubow, S. H. & Ida, S. 2010, Planet Migration, in EXOPLANETS, pg. 347–371, ed. Seager, S., University of Arizona PressGoogle Scholar
Levrard, B., Winisdoerffer, C., & Chabrier, G. 2009, ApJL, 692, L9CrossRefGoogle Scholar
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2007, ApJ, 655, 541CrossRefGoogle Scholar
Matsumura, S., Peale, S. J., & Rasio, F. A. 2010, ApJ, 725, 1995CrossRefGoogle Scholar
Mazeh, T., Zucker, S., & Pont, F. 2005, MNRAS, 356, 955CrossRefGoogle Scholar
Morton, T. D. & Johnson, J. A. 2011, ApJ, 729, 138CrossRefGoogle Scholar
Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498CrossRefGoogle Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ, 338, 424CrossRefGoogle Scholar
Pont, F., Husnoo, N., Mazeh, T., & Fabrycky, D. 2011, MNRAS, 414, 1278CrossRefGoogle Scholar
Queloz, D., Eggenberger, A., Mayor, M., Perrier, C., Beuzit, J. L., Naef, D., Sivan, J. P., & Udry, S. 2000, A&A, 359, L13Google Scholar
Rasio, F. A., Tout, C. A., Lubow, S. H., & Livio, M. 1996, ApJ, 470, 1187CrossRefGoogle Scholar
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954CrossRefGoogle Scholar
Taylor, S. F. 2010, preprint arXiv:1009.4221Google Scholar
Triaud, A. H. M. J., Collier Cameron, A., Queloz, D., Anderson, D. R., Gillon, M., Hebb, L., Hellier, C., Loeillet, B., Maxted, P. F. L., Mayor, M., Pepe, F., Pollacco, D., Ségransan, D., Smalley, B., Udry, S., West, R. G., & Wheatley, P. J. 2010, A&A, 524, A25+Google Scholar
Ward, W. R. 1997, ApJL, 482, L211+CrossRefGoogle Scholar
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, ApJL, 718, L145CrossRefGoogle Scholar
Wright, J. T., Upadhyay, S., Marcy, G. W., Fischer, D. A., Ford, E. B., & Johnson, J. A. 2009, ApJ, 693, 1084CrossRefGoogle Scholar
Wu, Y. & Murray, N. 2003, ApJ, 589, 605CrossRefGoogle Scholar
Wu, Y., Murray, N. W., & Ramsahai, J. M. 2007, ApJ, 670, 820CrossRefGoogle Scholar
Zahn, J.-P., Talon, S., & Matias, J. 1997, A&A, 322, 320Google Scholar