Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T06:50:11.668Z Has data issue: false hasContentIssue false

Understanding exoplanet formation, structure and evolution in 2010

Published online by Cambridge University Press:  10 November 2011

Gilles Chabrier
Affiliation:
École Normale Supérieure de Lyon, CRAL (CNRS, UMR 5574), F-69364 Lyon cedex 07, France Physics & Astronomy, University of Exeter, Exeter EX4 4PE, UK (chabrier@ens-lyon.fr, jeremy.leconte@ens-lyon.fr, ibaraffe@ens-lyon.fr)
Jérémy Leconte
Affiliation:
École Normale Supérieure de Lyon, CRAL (CNRS, UMR 5574), F-69364 Lyon cedex 07, France
Isabelle Baraffe
Affiliation:
École Normale Supérieure de Lyon, CRAL (CNRS, UMR 5574), F-69364 Lyon cedex 07, France Physics & Astronomy, University of Exeter, Exeter EX4 4PE, UK (chabrier@ens-lyon.fr, jeremy.leconte@ens-lyon.fr, ibaraffe@ens-lyon.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this short review, we summarize our present understanding (and non-understanding) of exoplanet formation, structure and evolution, in the light of the most recent discoveries. Recent observations of transiting massive brown dwarfs seem to remarkably confirm the predicted theoretical mass-radius relationship in this domain. This mass-radius relationship provides, in some cases, a powerful diagnostic to distinguish planets from brown dwarfs of same mass, as for instance for Hat-P-20b. If confirmed, this latter observation shows that planet formation takes place up to at least 8 Jupiter masses. Conversely, observations of brown dwarfs down to a few Jupiter masses in young, low-extinction clusters strongly suggests an overlapping mass domain between (massive) planets and (low-mass) brown dwarfs, i.e. no mass edge between these two distinct (in terms of formation mechanism) populations. At last, the large fraction of heavy material inferred for many of the transiting planets confirms the core-accretion scenario as been the dominant one for planet formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343Google Scholar
Anderson, D. et al. 2010, ApJ, 726, L19CrossRefGoogle Scholar
Andersen, M., Meyer, M., Greissl, J., & Aversa, A. 2008, ApJ, 683, L183CrossRefGoogle Scholar
Boss, A. 1997, Science, 276, 1836CrossRefGoogle Scholar
Baraffe, I., Chabrier, G., & Barman, T. 2008, A&A, 482, 315Google Scholar
Baraffe, I., Chabrier, G., & Barman, T. 2010, Reports on Progress in Physics, 73, 016901CrossRefGoogle Scholar
Batygin, K. & Stevenson, D. J. 2010, ApJ, 714, L238CrossRefGoogle Scholar
Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466CrossRefGoogle Scholar
Bouchy, F., et al. 2011, A&A, 525, A68Google Scholar
Boyd, D. & Whitworth, A. 2005, A&A, 430, 1059Google Scholar
Burkert, A., Lin, D., Bodenheimer, P., Jones, C., & Yorke, H. 2005, ApJ, 618, 512CrossRefGoogle Scholar
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502Google Scholar
Caballero, J., et al. 2007, A&A, 470, 903Google Scholar
Carter, J. & Winn, J. 2010a, ApJ, 709, 1219Google Scholar
Carter, J. & Winn, J. 2010b, ApJ, 716, 850CrossRefGoogle Scholar
Chabrier, G. & Baraffe, I. 1997, A&A, 327, 1039Google Scholar
Chabrier, G. & Baraffe, I. 2000, ARA&A, 38, 337Google Scholar
Chabrier, G. & Baraffe, I. 2007, ApJ, 661, L81Google Scholar
Chabrier, G., et al. 2007, Protostars and Planets V, Reipurth, B., Jewitt, D., & Keil, K. (eds.), University of Arizona Press, 951, 623Google Scholar
Chabrier, G., Baraffe, I., Leconte, J., Gallardo, J., & Barman, T. 2009, AIPC, 1094, 102Google Scholar
Deleuil, M., et al. 2008, A&A, 491, 889Google Scholar
Dullemond, C., Durisen, R., & Papaloizou, J. 2009, Structure Formation in Astrophysics, Ed. Chabrier, G., Cambridge U. PressGoogle Scholar
Eggleton, P., Kiseleva, L. & Hut, P. 1998, ApJ, 499, 853Google Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661Google Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375CrossRefGoogle Scholar
Goodman, J. 2009, ApJ, 693, 1645Google Scholar
Guillot, T. 2008, Physica Scripta 130, 014023CrossRefGoogle Scholar
Hansen, B. 2010, ApJ, 723, 285Google Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395CrossRefGoogle Scholar
Hut, P. 1981, A&A, 99, 126Google Scholar
Irwin, J., et al. 2010, ApJ, 718, 1353Google Scholar
Joergens, V. 2008, A&A, 492, 545Google Scholar
Johnson, J., et al. 2011, ApJ, 730, id.79Google Scholar
Leconte, J., Baraffe, I., Chabrier, G., Barman, T., & Levrard, B. 2009, A&A, 506, 385Google Scholar
Leconte, J., Chabrier, G., Baraffe, I., & Levrard, B. 2010, A&A, 516, A64Google Scholar
Leconte, J., Lai, D., & Chabrier, G. 2011a, A&A, 528, A41Google Scholar
Leconte, J., Chabrier, G., Baraffe, I., & Levrard, B. 2011b, EPJ Web of Conferences, 11, id.03004Google Scholar
Levrard, B., Winisdoerffer, C., & Chabrier, G. 2009, ApJ, 692, L9CrossRefGoogle Scholar
Luhman, K. L., et al. 2007, Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, 951, 443Google Scholar
Matsumura, S., Peale, S., & Rasio, F. 2010, ApJ, 725, 1995CrossRefGoogle Scholar
Mizuno, Z. 1980, Prog. Th. Phys., 64, 544CrossRefGoogle Scholar
Mordasini, C., Alibert, Y., & Benz, W. 2009, A&A, 501, 1139Google Scholar
Padoan, P. & Nordlund, A. 2004, ApJ, 617, 559Google Scholar
Pál, A., et al. 2010, MNRAS, 401, 2665CrossRefGoogle Scholar
Perna, R., Menou, K. & Rauscher, E. 2010, ApJ, 724, 313Google Scholar
Pollack, J., et al. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Pont, F., Aigrain, S., & Zucker, S. 2011, MNRAS, 411, 1953Google Scholar
Rafikov, R. 2005, ApJ, 621, L69CrossRefGoogle Scholar
Rafikov, R. 2006, ApJ, 648, 666CrossRefGoogle Scholar
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279CrossRefGoogle Scholar
Showman, A. & Guillot, T. 2002, A&A, 385, 166Google Scholar
Showman, A., Menou, K., & Cho, J. 2008, ASP Conf. Ser., 398, 419Google Scholar
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337CrossRefGoogle Scholar
Stevenson, D. J. 1982, Ann. Rev. of earth and planetary sc., 10, 257Google Scholar
Udry, S. & Santos, N. 2007, ARA&A, 45, 397Google Scholar
Valencia, D., Sasselov, D. D., & O'Connell, R. J. 2007, ApJ, 665, 1413CrossRefGoogle Scholar
Welsh, W., et al. 2010, ApJ, 713, L145CrossRefGoogle Scholar
Whitworth, A. & Stamatellos, D. 2006, A&A, 458, 817Google Scholar
Winn, J., Fabrycky, D., Albrecht, S., & Johnson, J. 2010, ApJ, 718, L145CrossRefGoogle Scholar
Wisdom, J. 2008, Icarus, 193, 637Google Scholar