Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T22:22:23.167Z Has data issue: false hasContentIssue false

A NIR spectrum of a hot Jupiter from the ground: Preliminary results

Published online by Cambridge University Press:  10 November 2011

Avi M. Mandell
Affiliation:
NASA GSFC, avi.mandell@nasa.gov
L. Drake Deming
Affiliation:
NASA GSFC, avi.mandell@nasa.gov
Geoffrey A. Blake
Affiliation:
Caltech
Heather A. Knutson
Affiliation:
UC Berkeley
Michael J. Mumma
Affiliation:
NASA GSFC, avi.mandell@nasa.gov
Geronimo L. Villanueva
Affiliation:
NASA GSFC, avi.mandell@nasa.gov Catholic University
Colette Salyk
Affiliation:
UT Austin
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High resolution NIR spectroscopy offers an excellent complement to the expanding dataset of transit and secondary eclipse observations of exo-planets with Spitzer that have provided the bulk of our understanding of the atmospheres and internal structure of these objects. High-resolution data can quantify the vertical temperature structure by isolating specific spectral lines formed at various depths. The presence of an opaque absorbing layer can also be inferred - and its pressure level determined quantitatively - via its effect on spectral line intensities.

We have analyzed data for a single secondary eclipse of the bright transiting exo-planet host star HD189733 at L-band wavelengths (3–4 μm) using the NIRSPEC instrument on Keck-II. We utilize a sophisticated first-order telluric absorption modeling technique that, combined with a calibration star, has already been proven to remove the effects of varying atmospheric transmittance and allow us to reach unprecedented S/N. We are conducting validation of the final data reduction products and developing high-resolution atmospheric models for comparison, but we have already been able to rule out emission from methane as reported by Swain et al. (2010). We present preliminary results and discuss future plans for analysis and observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alonso, R., Deeg, H. J., Kabath, P., & Rabus, M. 2010, AJ, 139, 1481CrossRefGoogle Scholar
Barber, R. J., Tennyson, J., Harris, G. J., & Tolchenov, R. N. 2006, MNRAS, 368, 1087CrossRefGoogle Scholar
Clough, S. A., Shephard, M. W., Mlawer, E. J., et al. 2005, JQSRT, 91, 233CrossRefGoogle Scholar
de Mooij, E. J. W. & Snellen, I. A. G. 2009, A&A, 493, L35Google Scholar
Gillon, M., Demory, B.-O., Triaud, A. H. M. J., et al. 2009, A&A, 506, 359Google Scholar
Hook, I. 2009, in: Science with the VLT in the ELT Era, 225CrossRefGoogle Scholar
Madhusudhan, N. & Seager, S. 2009, ApJ, 707, 24CrossRefGoogle Scholar
Mandell, A. M., Mumma, M. J., Blake, G. A., et al. 2008, ApJ, 681, L25CrossRefGoogle Scholar
Mandell, A. M., Deming, L. D., Blake, G. A., et al. 2011, ApJ, 728, id.18CrossRefGoogle Scholar
Redfield, S., Endl, M., Cochran, W. D., & Koesterke, L. 2008, ApJ, 673, L87CrossRefGoogle Scholar
Rothman, L. S., Gordon, I. E., Barbe, A., et al. 2009, JQSRT, 110, 533CrossRefGoogle Scholar
Shkolnik, E., Gaidos, E., & Moskovitz, N. 2006, AJ, 132, 1267CrossRefGoogle Scholar
Snellen, I. A. G., Albrecht, S., de Mooij, E. J. W., & Poole, R. S. L. 2008, A&A, 487, 357Google Scholar
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W., & Albrecht, S. 2010, Nature, 465, 1049CrossRefGoogle Scholar
Swain, M. R., Deroo, P., Griffith, , et al. 2010, Nature, 463, 637CrossRefGoogle Scholar