Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T13:35:04.841Z Has data issue: false hasContentIssue false

High-resolution simulations of planetesimal formation in turbulent protoplanetary discs

Published online by Cambridge University Press:  10 November 2011

Anders Johansen
Affiliation:
Lund Observatory, Lund University, Box 43, 221 00 Lund, Sweden email: anders@astro.lu.se
Hubert Klahr
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, 69117 Heidelberg, Germany
Thomas Henning
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present high resolution computer simulations of dust dynamics and planetesimal formation in turbulence triggered by the magnetorotational instability. Particles representing approximately meter-sized boulders clump in large scale overpressure regions in the simulation box. These overdensities readily contract due to the combined gravity of the particles to form gravitationally bound clusters with masses ranging from a few to several ten times the mass of the dwarf planet Ceres. Gravitationally bound clumps are observed to collide and merge at both moderate and high resolution. The collisional products form the top end of a distribution of planetesimal masses ranging from less than one Ceres mass to 35 Ceres masses. It remains uncertain whether collisions are driven by dynamical friction or underresolution of clumps.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Benz, W. 2000, SSRv, 92, 279Google Scholar
Blum, J. & Wurm, G. 2008, ARA&A, 46, 21Google Scholar
Cuzzi, J. N., Hogan, R. C., & Shariff, K., 2008, ApJ, 687, 1432CrossRefGoogle Scholar
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971Google Scholar
Fromang, S. & Nelson, R. P. 2005, MNRAS, 364, L81CrossRefGoogle Scholar
Goldreich, P. & Ward, W. R. 1972, ApJ, 183, 1051CrossRefGoogle Scholar
Goldreich, P., Lithwick, Y., & Sari, R. 2002, Nature, 420, 643CrossRefGoogle Scholar
Hayashi, C. 1981, Progress of Theoretical Physics Supplement, 70, 35CrossRefGoogle Scholar
Ida, S., Guillot, T., & Morbidelli, A. 2008, ApJ, 686, 1292CrossRefGoogle Scholar
Johansen, A., Klahr, H. & Henning, Th. 2006, ApJ, 636, 1121CrossRefGoogle Scholar
Johansen, A., Oishi, J. S., Low, M., Klahr, H., Henning, Th., & Youdin, A. 2007, Nature, 448, 1022CrossRefGoogle Scholar
Johansen, A., Brauer, F., Dullemond, C., Klahr, H., & Henning, T. 2008, A&A, 486, 597Google Scholar
Johansen, A., Youdin, A., & Klahr, H. 2009a, ApJ, 697, 1269CrossRefGoogle Scholar
Johansen, A., Youdin, A. & Mac Low, M.-M. 2009b, ApJL, 704, L75CrossRefGoogle Scholar
Leinhardt, Z. M. & Stewart, S. T. 2009, Icarus, 199, 542CrossRefGoogle Scholar
Lithwick, Y. & Chiang, E. 2007, ApJ, 656, 524CrossRefGoogle Scholar
Rein, H., Lesur, G., & Leinhardt, Z. M. 2010, A&A, 511, A69Google Scholar
Safronov, V. S. 1969, Evoliutsiia doplanetnogo oblaka (English transl.: Evolution of the Protoplanetary Cloud and Formation of Earth and the Planets, NASA Tech. Transl. F-677, Jerusalem: Israel Sci. Transl. 1972)Google Scholar
Sekiya, M. 1998, Icarus, 133, 298CrossRefGoogle Scholar
Youdin, A. N. & Shu, F. H. 2002, ApJ, 580, 494CrossRefGoogle Scholar
Youdin, A. N. & Goodman, J. 2005, ApJ, 620, 459CrossRefGoogle Scholar
Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2009, ApJ, 702, 1490CrossRefGoogle Scholar
Weidenschilling, S. J. & Cuzzi, J. N. 1993, in Protostars and Planets III, 1031Google Scholar
Weidenschilling, S. J. 1997, Icarus, 127, 290CrossRefGoogle Scholar
Wurm, G., Paraskov, G., & Krauss, O. 2005, Icarus, 178, 253CrossRefGoogle Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. 2010, A&A, 513, A57Google Scholar