Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T07:10:56.268Z Has data issue: false hasContentIssue false

Theoretical predictions of mass, semimajor axis and eccentricity distributions of super-Earths

Published online by Cambridge University Press:  10 November 2011

Shigeru Ida*
Affiliation:
Department of Earth & Planetary Science, Tokyo Institute of Technology, Ookayama 2-12-1 I2-10, Tokyo 152-8551, Japan email: ida@geo.titech.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the effects of close scattering and merging between planets on distributions of mass, semimajor axis and orbital eccentricity, using population synthesis model of planet formation, focusing on the distributions of close-in super-Earths, which are being observed recently. We found that a group of compact embryos emerge interior to the ice line, grow, migrate, and congregate into closely-packed convoys which stall in the proximity of their host stars. After the disk-gas depletion, they undergo orbit crossing, close scattering, and giant impacts to form multiple rocky Earths or super-Earths in non-resonant orbits around ~ 0.1AU with moderate eccentricities of ~ 0.01–0.1. The formation of these planets does not depend on model parameters such as type I migration speed. The fraction of solar-type stars with these super-Earths is anti-correlated with the fraction of stars with gas giants. The newly predicted family of close-in super-Earths makes less clear “planet desert” at intermediate mass range than our previous prediction.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Borucki, W., et al. 2010, Science, 327, 977CrossRefGoogle Scholar
Bouchy, F., Mayor, M., Lovis, C., Udry, S., Benz, W., Bertaux, J.-L., Delfosse, X., Mordasini, C., Pepe, F., Queloz, D., & Segransan, D. 2009, A&A, 496, 527Google Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Howard, A. W., Marcy, G. W., Johnson, J. A., Fischer, D. A., Wright, J. T., Isaacson, H., Valenti, J. A., Anderson, J., Lin, D. N. C., & Ida, S. 2010, Science, 330, 653CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2004a, ApJ, 604, 388CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2004b, ApJ, 616, 567CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2005, ApJ, 626, 1045CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2008a, ApJ, 673, 484CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2008b, ApJ, 685, 584CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2010, ApJ, 719, 810CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2011, in preparationGoogle Scholar
Juric, M. & Tremaine, S. 2008, ApJ, 686, 603CrossRefGoogle Scholar
Lo Curto, G., Mayor, M., Benz, W., Bouchy, F., Lovis, C., Moutou, C., Naef, D., Pepe, F., Queloz, D., Santos, N. C., Segransan, D., & Udry, S. 2010, A&A, 67, 4679Google Scholar
Marzari, F. & Weidenschilling, S. J. 2000, Icarus, 156, 570CrossRefGoogle Scholar
Mayor, M., Udry, S., Lovis, C., Pepe, F., Queloz, D., Benz, W., Bertaux, J.-L., Bouchy, F., Mordasini, C., & Segransan, D. 2009, A&A, 493, 636Google Scholar
Mordasini, C., Alibert, Y., & Benz, W. 2009a, A&A, 501, 1139Google Scholar
Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009b, A&A, 501, 1161Google Scholar
Nagasawa, M. & Ida, S. 2011, in preparationGoogle Scholar
Meyer, B. S., Clayton, D. D., & The, L.-S. 2000, ApJ (Letters), 540, L49CrossRefGoogle Scholar
Ogihara, M., Duncan, M., & Ida, S. 2010, ApJ, 721, 1184CrossRefGoogle Scholar
Ogihara, M. & Ida, S. 2009, ApJ, 699, 824CrossRefGoogle Scholar
Terquem, C. & Papaloizou, J. C. B. 2007, ApJ, 654, 1110CrossRefGoogle Scholar
Rasio, F. A., Ford, E. B. 1996, Science, 274, 954CrossRefGoogle Scholar