Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T09:23:33.964Z Has data issue: false hasContentIssue false

Inertial effects on the dynamics, streamline topology and interfacial stresses due to a drop in shear

Published online by Cambridge University Press:  19 August 2011

Rajesh Kumar Singh
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE-19716, USA
Kausik Sarkar*
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE-19716, USA
*
Email address for correspondence: sarkar@udel.edu

Abstract

Deformation of a viscous drop in shear at finite inertia and the streamlines around it are numerically investigated. Inertia destroys the closed streamlines found in Stokes flow. It creates reversed streamlines and streamlines spiralling around the vorticity axis. Spiralling streamlines spiral either towards the central shear plane or away from it depending on the viscosity ratio and the inertia. The zones of open or reversed streamlines as well as streamlines spiralling towards or away from the central shear plane are delineated for varying viscosity ratio and Reynolds number. In contrast to the infinite extent of the closed Stokes streamlines around a rigid sphere in shear, the region of the spiralling streamlines in the vorticity direction both for a rigid sphere and a drop shrinks with inertia. Inertia increases deformation, and introduces oscillations in drop shape. An approximate analysis explains the scaling of oscillation frequency and damping with Reynolds and capillary numbers. The steady-state drop inclination angle with the flow axis increases with increasing Reynolds number for small Reynolds number. But it decreases at higher Reynolds number, especially for larger capillary numbers. For smaller capillary numbers, drop inclination reaches higher than (the direction of maximum extension), critically affecting the interfacial stresses due to the drop. It changes the sign of first and second normal interfacial stress differences (and thereby these components of the effective stresses of an emulsion of such drops). Increasing viscosity ratio orients the drop towards the flow axis, which increases the critical Reynolds number above which the drop inclination reaches more than .

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Acrivos, A. 1971 Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field. J. Fluid Mech. 46, 233240.CrossRefGoogle Scholar
2. Aggarwal, N. & Sarkar, K. 2007 Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear. J. Fluid Mech. 584, 121.CrossRefGoogle Scholar
3. Aggarwal, N. & Sarkar, K. 2008a Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow. J. Fluid Mech. 601, 6384.CrossRefGoogle Scholar
4. Aggarwal, N. & Sarkar, K. 2008b Rheology of an emulsion of viscoelastic drops in steady shear. J. Non-Newtonian Fluid Mech. 150, 1931.CrossRefGoogle Scholar
5. Almusallam, A. S., Larson, R. G. & Solomon, M. J. 2004 Comprehensive constitutive model for immiscible blends of Newtonian polymers. J. Rheol. 48, 319348.CrossRefGoogle Scholar
6. Batchelor, G. K. 1970 Stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
7. Chaffey, C. E. & Brenner, H. 1967 A second order theory for shear deformation of drops. J. Colloid Interface Sci. 24, 258269.CrossRefGoogle Scholar
8. Choi, S. J. & Schowalter, W. R. 1975 Rheological properties of non-dilute suspensions of deformable particles. Phys. Fluids 18, 420427.Google Scholar
9. Guido, S. & Simeone, M. 1998 Binary collision of drops in simple shear flow by computer-assisted video optical microscopy. J. Fluid Mech. 357, 120.CrossRefGoogle Scholar
10. Guido, S. & Villone, M. 1998 Three-dimensional shape of a drop under simple shear flow. J. Rheol. 42, 395415.CrossRefGoogle Scholar
11. Kossack, C. A. & Acrivos, A. 1974 Steady simple shear flow past a circular cylinder at moderate Reynolds numbers: a numerical solution. J. Fluid Mech. 66, 353376.Google Scholar
12. Kulkarni, P. M. & Morris, J. F. 2008a Pair-sphere trajectories in finite-Reynolds-number shear flow. J. Fluid Mech. 596, 413435.Google Scholar
13. Kulkarni, P. M. & Morris, J. F. 2008b Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20, 040602.CrossRefGoogle Scholar
14. Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.CrossRefGoogle Scholar
15. Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport. Cambridge University Press.CrossRefGoogle Scholar
16. Li, X. & Sarkar, K. 2005a Negative normal stress elasticity of emulsion of viscous drops at finite inertia. Phys. Rev. Lett. 95, 256001.CrossRefGoogle ScholarPubMed
17. Li, X. Y. & Sarkar, K. 2005b Drop dynamics in an oscillating extensional flow at finite Reynolds numbers. Phys. Fluids 17, 027103.CrossRefGoogle Scholar
18. Li, X. Y. & Sarkar, K. 2005c Effects of inertia on the rheology of a dilute emulsion of drops in shear. J. Rheol. 49, 13771394.Google Scholar
19. Li, X. Y. & Sarkar, K. 2005d Numerical investigation of the rheology of a dilute emulsion of drops in an oscillating extensional flow. J. Non-Newtonian Fluid Mech. 128, 7182.CrossRefGoogle Scholar
20. Li, X. Y. & Sarkar, K. 2006 Drop deformation and breakup in a vortex at finite inertia. J. Fluid Mech. 564, 123.CrossRefGoogle Scholar
21. Lin, C. J., Perry, J. H. & Schowalter, W. R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44, 117.CrossRefGoogle Scholar
22. Mellema, J. & Willemse, M. W. M. 1983 Effective viscosity of dispersions approached by a statistical continuum method. Physica A 122, 286312.CrossRefGoogle Scholar
23. Mikulencak, D. R. & Morris, J. F. 2004 Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech. 520, 215242.Google Scholar
24. Mukherjee, S. & Sarkar, K. 2009 Effects of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady shear. J. Non-Newtonian Fluid Mech. 160, 104112.CrossRefGoogle Scholar
25. Mukherjee, S. & Sarkar, K. 2010 Effects of viscoelasticity on the retraction of a sheared drop. J. Non-Newtonian Fluid Mech. 165, 340349.CrossRefGoogle Scholar
26. Mukherjee, S. & Sarkar, K. 2011 Viscoelastic drop falling through a viscous medium. Phys. Fluids 23, 013101.CrossRefGoogle Scholar
27. Olapade, P. O., Singh, R. K. & Sarkar, K. 2009 Pair-wise interactions between deformable drops in free shear at finite inertia. Phys. Fluids 21, 063302.CrossRefGoogle Scholar
28. Onuki, A. 1987 Viscosity enhancement by domains in phase-separating fluids near the critical point: proposal of critical rheology. Phys. Rev. A 35, 51495155.CrossRefGoogle ScholarPubMed
29. Poe, G. G. & Acrivos, A. 1975 Closed-streamline flows past rotating single cylinders and spheres: inertia effects. J. Fluid Mech. 72, 605623.CrossRefGoogle Scholar
30. Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
31. Raja, R. V., Subramanian, G. & Koch, D. L. 2010 Inertial effects on the rheology of a dilute emulsion. J. Fluid Mech. 646, 255296.CrossRefGoogle Scholar
32. Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.Google Scholar
33. Renardy, Y. 2008 Effect of startup conditions on drop breakup under shear with inertia. Intl J. Multiphase Flow 34, 11851189.CrossRefGoogle Scholar
34. Renardy, Y. Y. & Cristini, V. 2001a Effect of inertia on drop breakup under shear. Phys. Fluids 13, 713.Google Scholar
35. Renardy, Y. Y. & Cristini, V. 2001b Scalings for fragments produced from drop breakup in shear flow with inertia. Phys. Fluids 13, 21612164.CrossRefGoogle Scholar
36. Robertson, C. R. & Acrivos, A. 1970a Low Reynolds number shear flow past a rotating circular cylinder. Part 1. Momentum transfer. J. Fluid Mech. 40, 685704.CrossRefGoogle Scholar
37. Robertson, C. R. & Acrivos, A. 1970b Low Reynolds number shear flow past a rotating circular cylinder. Part 2. Heat transfer. J. Fluid Mech. 40, 705718.CrossRefGoogle Scholar
38. Rosenkilde, C. E. 1967 Surface-energy tensors. J. Math. Phys. 8, 8488.CrossRefGoogle Scholar
39. Sarkar, K. & Schowalter, W. R. 2000 Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows. J. Non-Newtonian Fluid Mech. 95, 315342.CrossRefGoogle Scholar
40. Sarkar, K. & Schowalter, W. R. 2001a Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation. J. Fluid Mech. 436, 177206.CrossRefGoogle Scholar
41. Sarkar, K. & Schowalter, W. R. 2001b Deformation of a two-dimensional viscous drop in time-periodic extensional flows: analytical treatment. J. Fluid Mech. 436, 207230.CrossRefGoogle Scholar
42. Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V. & Guido, S. 2006 Drop deformation in microconfined shear flow. Phys. Rev. Lett. 97, 054502.CrossRefGoogle ScholarPubMed
43. Singh, R. K. & Sarkar, K. 2009 Effects of viscosity ratio and three dimensional positioning on hydrodynamic interactions between two viscous drops in a shear flow at finite inertia. Phys. Fluids 21, 103303.CrossRefGoogle Scholar
44. Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
45. Subramanian, G. & Brady, J. F. 2006 Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech. 559, 151203.CrossRefGoogle Scholar
46. Subramanian, G. & Koch, D. L. 2006a Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett. 96, 134503.CrossRefGoogle ScholarPubMed
47. Subramanian, G. & Koch, D. L. 2006b Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids 18, 073302.CrossRefGoogle Scholar
48. Tanaka, H. & Araki, T. 2000 Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys. Rev. Lett. 85, 13381341.CrossRefGoogle ScholarPubMed
49. Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A Math. Phys. Sci. 146, 05010523.Google Scholar
50. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.CrossRefGoogle Scholar
51. Unverdi, S. O. & Tryggvason, G. 1988 A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100, 2537.CrossRefGoogle Scholar