Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T07:38:12.162Z Has data issue: false hasContentIssue false

CP and related phenomena in the context of Stellar Evolution

Published online by Cambridge University Press:  21 October 2010

J. Braithwaite
Affiliation:
Canadian Institute for Theoretical Astrophysics, Toronto, Canada Argelander Institut für Astronomie, Bonn, Germany; jonathan@astro.uni-bonn.de
T. Akgün
Affiliation:
Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile; akgun@astro.puc.cl
E. Alecian
Affiliation:
Observatoire de Paris, LESIA, 5 place Jules Janssen, 92190 Meudon, Franceevelyne.alecian@obspm.fr
A. F. Kholtygin
Affiliation:
Department of Astronomy, Saint-Petersburg State University, Saint-Petersburg, Russia; afkholtygin@gmail.com
J. D. Landstreet
Affiliation:
University of Western Ontario, 1151 Richmond Street, London ON N6A 3K7, Canada Armagh Observatory, Northern Ireland
S. Mathis
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France; stephane.mathis@cea.fr
G. Michaud
Affiliation:
Département de Physique, Université de Montréal, Montréal, PQ, H3C 3J7, Canada; michaudg@astro.umontreal.ca
J. Portnoy
Affiliation:
Sami Shamoon College of Engineering, Israeljacovp@sce.ac.il
G. Alecian
Affiliation:
Observatoire de Paris, LESIA, 5 place Jules Janssen, 92190 Meudon, Franceevelyne.alecian@obspm.fr
V. D. Bychkov
Affiliation:
Special Astrophysical Observatory, Russia
L. V. Bychkova
Affiliation:
Special Astrophysical Observatory, Russia
N. Drake
Affiliation:
Department of Astronomy, Saint-Petersburg State University, Saint-Petersburg, Russia; afkholtygin@gmail.com
S. N. Fabrika
Affiliation:
Special Astrophysical Observatory, Russia
A. Reisenegger
Affiliation:
Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile; akgun@astro.puc.cl
R. Steinitz
Affiliation:
Physics Dept., Ben Gurion University of the Negev, Israel
M. Vick
Affiliation:
Département de Physique, Université de Montréal, Montréal, PQ, H3C 3J7, Canada; michaudg@astro.umontreal.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the interaction in intermediate and high mass stars between their evolution and magnetic and chemical properties. We describe the theory of Ap-star ‘fossil’ fields, before touching on the expected secular diffusive processes which give rise to evolution of the field. We then present recent results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that magnetic fields of the kind seen on the main-sequence already exist during the pre-main sequence phase, in agreement with fossil field theory, and that the origin of the slow rotation of Ap/Bp stars also lies early in the pre-main sequence evolution; we also present results confirming a lack of stars with fields below a few hundred gauss. We then seek which macroscopic motions compete with atomic diffusion in determining the surface abundances of AmFm stars. While turbulent transport and mass loss, in competition with atomic diffusion, are both able to explain observed surface abundances, the interior abundance distribution is different enough to potentially lead to a test using asterosismology. Finally we review progress on the turbulence-driving and mixing processes in stellar radiative zones.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Alecian, E., Catala, C., Wade, G. A. et al. 2008, MNRAS 385, 391CrossRefGoogle Scholar
Alecian, E., Wade, G. A., Catala, C. et al. 2009, MNRAS 400, 354CrossRefGoogle Scholar
Aurière, M., Wade, G. A., Silvester, J. et al. 2007, A&A 475, 1053Google Scholar
Babel, J. & Montmerle, T. 1997, A&A 323, 121Google Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958, Proc. R. Soc. A 244, 17Google Scholar
Bouret, J.-C., Donati, J.-F., Martins, F. et al. 2008, MNRAS 389, 75CrossRefGoogle Scholar
Braithwaite, J. 2006, A&A 449, 451Google Scholar
Braithwaite, J. 2008, MNRAS 386, 1947CrossRefGoogle Scholar
Braithwaite, J. 2009, MNRAS 397, 763CrossRefGoogle Scholar
Braithwaite, J. & Spruit, H. 2004, Nature 431, 819CrossRefGoogle Scholar
Brun, A. S. & Zahn, J.-P. 2006, A&A 457, 665Google Scholar
Bychkov, V. D., Bychkova, L. V., & Madej, J., 2009, MNRAS 394, 1338CrossRefGoogle Scholar
Decressin, T., Mathis, S., Palacios, A., Siess, L., Talon, S., Charbonnel, C., & Zahn, J.-P. 2009, A&A 495, 271Google Scholar
Donati, J.-F. & Landstreet, J.D. 2009, ARAA 47, 333.CrossRefGoogle Scholar
Duez, V., Mathis, S., & Turck-Chièze, S. 2009, MNRAS, in press (arXiv:0911.0788)Google Scholar
Goldreich, P. & Nicholson, P. D. 1989, ApJ 342, 1079CrossRefGoogle Scholar
Goossens, M., Biront, D., & Tayler, R. J. 1981, Ap&SS 75, 521Google Scholar
Gough, D. O. & McIntyre, M. E. 1998, Nature 394, 567CrossRefGoogle Scholar
Kumar, P., Talon, S., & Zahn, J.-P. 1999, ApJ 520, 859CrossRefGoogle Scholar
Landstreet, J. D. & Borra, E. F. 1978, ApJ 224, L5CrossRefGoogle Scholar
Landstreet, J.D., Silaj, J., Andretta, V. et al. 2008 A&A 481, 465Google Scholar
Maeder, A. & Zahn, J.-P. 1998, A&A 334, 1000Google Scholar
Markey, P. & Tayler, R. J. 1973, MNRAS 163, 77CrossRefGoogle Scholar
Mathis, S. 2009, A&A 506, 811Google Scholar
Mathis, S., Palacios, A., & Zahn, J.-P. 2004, A&A 425, 243Google Scholar
Mathis, S. & Zahn, J.-P. 2004, A&A 425, 229Google Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A 440, 653Google Scholar
Menou, K., Balbus, S. A., & Spruit, H. C. 2004, ApJ 607, 564CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2000, A&A 361, 101Google Scholar
Michaud, G., Richer, J., & Richard, O. 2008, ApJ 675, 1223CrossRefGoogle Scholar
Moss, D. 1977, MNRAS 178, 51CrossRefGoogle Scholar
Quievy, D., Charbonneau, P., Michaud, G., & Richer, J. 2009, A&A 500, 1163Google Scholar
Reisenegger, A. 2009, A&A 499, 557Google Scholar
Richard, O., Michaud, G., & Richer, J. 2001, ApJ 558, 377CrossRefGoogle Scholar
Richer, J., Michaud, G., Rogers, F., et al. 1998, ApJ 492, 833CrossRefGoogle Scholar
Richer, J., Michaud, G., & Turcotte, S., 2000, ApJ 529, 338CrossRefGoogle Scholar
Spruit, H. C. 1999, A&A 349, 189Google Scholar
Spruit, H. C. 2002, A&A 381, 923Google Scholar
Talon, S. & Charbonnel, C. 2005, A&A 440, 981Google Scholar
Tayler, R.J. 1973, MNRAS 161, 365CrossRefGoogle Scholar
Townsend, R.H.D., Owocki, S.P. & Ud Doula, A. 2007, MNRAS 382, 139; see also http://www.astro.wisc.edu/~townsend/static.php?ref=rrm-moviesCrossRefGoogle Scholar
Turcotte, S., Richer, J., Michaud, G., Iglesias, C., & Rogers, F. 1998, ApJ 504, 539CrossRefGoogle Scholar
Wright, G. A. E. 1973, MNRAS 162, 339CrossRefGoogle Scholar
Zahn, J.-P. 1977, A&A 57, 383Google Scholar
Zahn, J.-P. 1983, Saas-Fee Advanced Course 13, Astrophysical Processes in Upper Main Sequence Stars, eds. Hauck, B. and Maeder, A., publisher: Geneva Observatory 253Google Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A 474, 145Google Scholar
von Zeipel, H. 1924, MNRAS 84, 665CrossRefGoogle Scholar