Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T02:52:17.082Z Has data issue: false hasContentIssue false

Boron abundances in the Galactic disk

Published online by Cambridge University Press:  23 April 2010

Katia Cunha*
Affiliation:
NOAO, 950 N. Cherry Ave, Tucson, Arizona email: kcunha@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When compared to lithium and beryllium, the absence of boron lines in the optical results in a relatively small data set of boron abundances measured in Galactic stars to date. In this paper we discuss boron abundances published in the literature and focus on the evolution of boron in the Galaxy as measured from pristine boron abundances in cool stars as well as early-type stars in the Galactic disk. The trend of B with Fe obtained from cool F-G dwarfs in the disk is found to have a slope of 0.87 ± 0.08 (in a log-log plot). This slope is similar to the slope of B with Fe found for the metal poor halo stars and there seems to be a smooth connection between the halo and disk in the chemical evolution of boron. The disk trend of boron with oxygen has a steeper slope of 1.5. This slope suggests an intermediate behavior between primary and secondary production of boron with respect to oxygen. The slope derived for oxygen is consistent with the slope obtained for Fe provided that [O/Fe] increases as [Fe/H] decreases, as observed in the disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARAA, 47, 481CrossRefGoogle Scholar
Boesgaard, A. M. & Heacox, W. D. 1978, ApJ, 226, 888CrossRefGoogle Scholar
Boesgaard, A. M., Deliyannis, C. P., Stephens, A., & Lambert, D. L. 1998, ApJ, 492, 727CrossRefGoogle Scholar
Boesgaard, A. M., McGrath, E. J., Lambert, D. L., & Cunha, K. 2004, ApJ, 606, 306CrossRefGoogle Scholar
Boesgaard, A. M., Deliyannis, C. P., & Steinhauer, A. 2005, ApJ, 621, 991CrossRefGoogle Scholar
Cunha, K., Lambert, D. L, Lemke, M., Gies, D. R., & Lewis, C. R. 1997, ApJ, 478, 211CrossRefGoogle Scholar
Cunha, K. & Smith, V. V. 1999, ApJ, 512, 1006CrossRefGoogle Scholar
Cunha, K., Smith, V. V., Boesgaard, A. M., & Lambert, D. L. 2000, ApJ, 530, 939CrossRefGoogle Scholar
Duncan, D. K., Lambert, D. L., & Lemke, M. 1992, ApJ, 401, 584Google Scholar
Duncan, D. K., Primas, F., Rebull, L. M., Boesgaard, A. M., Deliyannis, C. P., Hobbs, L. M., King, J. R., & Ryan, S. G. 1997, ApJ, 488, 338CrossRefGoogle Scholar
García López, R. J., Lambert, D. L., Edvardsson, B., Gustafsson, B., Kiselman, D., & Rebolo, Rafael 1998, ApJ, 500, 241CrossRefGoogle Scholar
Kiselman, D. & Carlsson, M. 1996, A&A 311, 680Google Scholar
Kohl, J. L., Parkinson, W. H., & Withbroe, G. L. 1977, ApJ, 212, L101Google Scholar
Lodders, K., Palme, H., & Gail, H-P. 2009, Landolt-Bornstein, New Series, Astronomy and Astrophysics, Ed. Springer Verlag, in press (arXiv:astro-ph/0901.1149)Google Scholar
Mendel, J. T., Venn, K. A., Proffitt, C. R., Brooks, A. M., & Lambert, D. L. 2006, ApJ, 640, 1039CrossRefGoogle Scholar
Primas, F., Duncan, D. K., Peterson, R. C., & Thorburn, J. A. 1999, A&A, 343, 545Google Scholar
Proffitt, C. R. & Quigley, M. F. 2001, ApJ, 548, 429CrossRefGoogle Scholar
Reeves, H., Fowler, W. A., & Hoyle, F. 1970, Nature, 226, 727CrossRefGoogle Scholar
Venn, K. A., Brooks, A. M., Lambert, D. L., Lemke, M., Langer, N., Lennon, D. J., & Keenan, F. P. 2002, ApJ, 565, 571CrossRefGoogle Scholar
Woosley, S. E., Hartmann, D. H., Hoffman, R. D., & Haxton, W. C. 1990, ApJ, 356, 272Google Scholar