Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T06:56:20.668Z Has data issue: false hasContentIssue false

The light elements in the light of 3D and non-LTE effects

Published online by Cambridge University Press:  23 April 2010

Martin Asplund
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, D-85741 Garching, Germany email: asplund@mpa-garching.mpg.de
Karin Lind
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany email: klind@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review we discuss possible systematic errors inherent in classical 1D LTE abundance analyses of late-type stars for the light elements (here: H, He, Li, Be and B). The advent of realistic 3D hydrodynamical model atmospheres and the availability of non-LTE line formation codes place the stellar analyses on a much firmer footing and indeed drastically modify the astrophysical interpretations in many cases, especially at low metallicities. For the Teff-sensitive hydrogen lines both stellar granulation and non-LTE are likely important but the combination of the two has not yet been fully explored. A fortuitous near-cancellation of significant but opposite 3D and non-LTE effects leaves the derived 7Li abundances largely unaffected but new atomic collisional data should be taken into account. We also discuss the impact on 3D non-LTE line formation on the estimated lithium isotopic abundances in halo stars in light of recent claims that convective line asymmetries can mimic the presence of 6Li. While Be only have relatively minor non-LTE abundance corrections, B is sensitive even if the latest calculations imply smaller non-LTE effects than previously thought.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allard, N. F., Kielkopf, J. F., Cayrel, R., & van't Veer-Menneret, C. 2008, A&A, 480, 581Google Scholar
Asplund, M. 2005, ARAA, 43, 481Google Scholar
Asplund, M., Carlsson, M., & Botnen, A. V. 2003, A&A, 399, L31Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARAA, 47, 481CrossRefGoogle Scholar
Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V. 2006, ApJ, 644, 229CrossRefGoogle Scholar
Asplund, M., Nordlund, Å., Trampedach, R. et al. 2000, A&A, 359, 729Google Scholar
Asplund, M., Nordlund, Å., Trampedach, R., & Stein, R. F. 1999, A&A, 346, L17Google Scholar
Barklem, P. S. 2007, A&A, 466, 327Google Scholar
Barklem, P. S., Belyaev, A. K., & Asplund, M. 2003, A&A, 409, L1Google Scholar
Barklem, P. S., Piskunov, N., & O'Mara, B. J. 2000, A&A, 363, 1091Google Scholar
Belyaev, A. K. & Barklem, P. S. 2003, Phys. Rev. A, 68, 062703CrossRefGoogle Scholar
Bergemann, M. & Gehren, T. 2008, A&A, 492, 823Google Scholar
Carlsson, M., Rutten, R. J., Bruls, J. H. M. J., & Shchukina, N. G. 1994, A&A, 288, 860Google Scholar
Cayrel, R., Steffen, M., Chand, H. et al. 2007, A&A, 473, L37Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687Google Scholar
Drawin, H. 1968, Zeitschrift für Physik, 211, 404CrossRefGoogle Scholar
Fabbian, D., Asplund, M., Barklem, P. S., Carlsson, M., & Kiselman, D. 2009, A&A, 500, 1221Google Scholar
Garcia Lopez, R. J., Severino, G., & Gomez, M. T. 1995, A&A, 297, 787Google Scholar
García Pérez, A., Asplund, M., & Kiselman, D. 2010, A&A, submittedGoogle Scholar
García Pérez, A. E., Aoki, W., Inoue, S. et al. 2009, A&A, 504, 213Google Scholar
Holweger, H. & Müller, E. A. 1974, Solar Phys., 39, 19CrossRefGoogle Scholar
Israelian, G., Santos, N. C., Mayor, M., & Rebolo, R. 2003, A&A, 405, 753Google Scholar
Jedamzik, K. & Pospelov, M. 2009, New Journal of Physics, 11, 105028CrossRefGoogle Scholar
Kiselman, D. 1997, ApJ (Letters), 489, L107Google Scholar
Kiselman, D. & Carlsson, M. 1996, A&A, 311, 680Google Scholar
Korn, A. J., Grundahl, F., Richard, O. et al. 2006, Nature, 442, 657Google Scholar
Korn, A. J., Shi, J., & Gehren, T. 2003, A&A, 407, 691Google Scholar
Lind, K., Asplund, M., & Barklem, P. S. 2009 a, A&A, 503, 541Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009 b, A&A, 503, 545Google Scholar
Ludwig, H., Behara, N. T., Steffen, M., & Bonifacio, P. 2009 a, A&A, 502, L1Google Scholar
Ludwig, H., Caffau, E., Steffen, M. et al. 2009 b, MemSAI, 80, 711Google Scholar
Muthsam, H. J., Kupka, F., Loew-Baselli, B. et al. 2009, arXiv:0905.0177Google Scholar
Neckel, H. & Labs, D. 1994, Solar Phys., 153, 91CrossRefGoogle Scholar
Nordlund, Å., Stein, R. F., & Asplund, M. 2009, Living Reviews in Solar Physics, 6, 2CrossRefGoogle Scholar
Pereira, T., Asplund, M., Trampedach, R., & Collet, R. 2010, A&A, in pressGoogle Scholar
Pereira, T. M. D., Asplund, M., & Kiselman, D. 2009 a, A&A, 508, 1403Google Scholar
Pereira, T. M. D., Kiselman, D., & Asplund, M. 2009 b, A&A, 507, 417Google Scholar
Sbordone, L., Bonifacio, P., Caffau, E. et al. 2010, A&A, in pressGoogle Scholar
Smith, V. V., Lambert, D. L., & Nissen, P. E. 1993, ApJ, 408, 262Google Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357Google Scholar
Steffen, M., Cayrel, R., Bonifacio, P., Ludwig, H., & Caffau, E. 2010, arXiv:1001.3274Google Scholar
Tan, K., Shi, J., & Zhao, G. 2010, ApJ, in pressGoogle Scholar
Vögler, A., Shelyag, S., Schüssler, M. et al. 2005, A&A, 429, 335Google Scholar