Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T07:00:29.571Z Has data issue: false hasContentIssue false

Measurements of 3He in Galactic HII regions and planetary nebulae

Published online by Cambridge University Press:  23 April 2010

T. M. Bania
Affiliation:
Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA email: bania@bu.edu
R. T. Rood
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA email: rtr@virginia.edu
D. S. Balser
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903 email: dbalser@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cosmic abundance of the 3He isotope has important implications for many fields of astrophysics. We are using the 8.665 GHz hyperfine transition of 3He+ to determine the 3He/H abundance in Milky Way H ii regions and planetary nebulae. Here we review the 30 year history of our 3He program, report on its current status, and describe our future plans.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Balser, D. S., Bania, T. M., Brockway, C. J., Rood, R. T., & Wilson, T. L. 1994, ApJ, 430, 667CrossRefGoogle Scholar
Balser, D. S., Bania, T. M., Rood, R. T., & Wilson, T. L. 1997, ApJ, 483, 320CrossRefGoogle Scholar
Balser, D. S., Bania, T. M., Rood, , & Wilson, T. W. 1999, ApJ, 510, 759CrossRefGoogle Scholar
Balser, D. S., Rood, R. T., & Bania, T. M. 1999, ApJ, 522, L73 [N3242]CrossRefGoogle Scholar
Balser, D. S., Goss, W. M., Bania, T. M., & Rood, R. T. 2005, ApJ, 640, 360 [J320]CrossRefGoogle Scholar
Bania, T. M., Balser, D. S., Rood, R. T., Wilson, T. L., & Wilson, T. J. 1997, ApJS, 415, 54Google Scholar
Bania, T. M., Balser, D. S., Rood, R. T., Wilson, T. L., & LaRocque, J. M. 2007, ApJ, 664, 915CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Wilson, T. L. 1987, ApJ, 323, 30CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Balser, D. S. 2002, Nature, 415, 54CrossRefGoogle Scholar
Charbonnel, C. & Zahn, J. P. 2007a, A&A, 467, L15Google Scholar
Charbonnel, C. & Zahn, J. P. 2007b, A&A, 476, L29Google Scholar
Charbonnel, C. & Lagarde, N. 2010, in: Charbonnel, C., Tosi, M., Primas, F., & Chiappini, C. (eds.), Light Elements in the Universe. Proc. IAU Symposium No. 268, (Cambridge: CUP), p. XXGoogle Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2006, Science, 314, 1580CrossRefGoogle Scholar
Galli, D., Palla, F., Ferrini, F., & Penco, U. 1995, ApJ, 443, 536CrossRefGoogle Scholar
Galli, D., Stanghellini, L., Tosi, M., & Palla, F. 1997, ApJ, 456, 478Google Scholar
Geiss, J. 1993, in: Prantzos, N., Vangioni-Flam, E., & Casse, M. (eds.), Origin and Evolution of Elements. (Cambridge: CUP), p. 89Google Scholar
Gloecker, G. & Geiss, J. 1996, Nature, 381, 210CrossRefGoogle Scholar
Palla, F., Galli, D., Marconi, A., Stanghellini, L., & Tosi, M. 2002, ApJ, 568, L57CrossRefGoogle Scholar
Romano, D., Tosi, M., Matteucci, F., & Chiappini, C. 2003, MNRAS, 346, 295CrossRefGoogle Scholar
Rood, R. T., Bania, T. M., & Wilson, T. L. 1984, ApJ, 280, 629CrossRefGoogle Scholar
Rood, R. T., Bania, T. M., & Wilson, T. L. 1992, Nature, 355, 618CrossRefGoogle Scholar
Rood, R. T., Bania, T. M., Wilson, T. L., & Balser, D. S. 1995, in: Crane, P. (ed.), ESO/EIPC Workshop on the Light Elements. (Heidelberg: Springer), p. 201Google Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M. 1976, ApJ, 207, L57 [RST]CrossRefGoogle Scholar
Rood, R. T., Wilson, T. L., & Steigman, G. 1979, ApJ, 227, L97CrossRefGoogle Scholar
Spergel, D. N. et al. 2003 ApJS, 148, 175CrossRefGoogle Scholar
Tosi, M. 2000, in: da Silva, L., Spite, M., & de Medeiros, J. R. (eds.), The Light Elements and Their Evolution, Proc. IAU Symposium No. 198, (San Francisco: ASP), p. 525Google Scholar
Wilson, T. L. & Rood, R. T. 1994, ARAA, 32, 191CrossRefGoogle Scholar