Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T08:05:08.685Z Has data issue: false hasContentIssue false

Modeling high-redshift galaxies: what can we learn from high and ultra-high resolution hydrodynamical simulations?

Published online by Cambridge University Press:  13 April 2010

J. Devriendt
Affiliation:
Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK email: jeg@astro.ox.ac.uk
A. Slyz
Affiliation:
Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK email: jeg@astro.ox.ac.uk
L. Powell
Affiliation:
Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK email: jeg@astro.ox.ac.uk
C. Pichon
Affiliation:
Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK email: jeg@astro.ox.ac.uk Institut d'Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris, France
R. Teyssier
Affiliation:
Institute of Theoretical Physics, University of Zurich, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland Service d'Astrophysique, CEA Saclay, Bât. 141, F-91191 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results from a high resolution cosmological galaxy formation simulation called Mare Nostrum and a ultra-high resimulation of the first 500 million years of a single, Milky Way (MW) sized galaxy. Using the cosmological run, we measure UV luminosity functions and assess their sensitivity to both cosmological parameters and dust extinction. We find remarkably good agreement with the existing data over the redshift range 4 < z < 7 provided we adopt the favoured cosmology (WMAP 5 year parameters) and a self-consistent treatment of the dust. Cranking up the resolution, we then study in detail a z = 9 protogalaxy sitting at the intersection of cold gas filaments. This high-z MW progenitor grows a dense, rapidly spinning, thin disk which undergoes gravitational fragmention. Star formation in the resulting gas clumps rapidly turns them into globular clusters. A far reaching galactic wind develops, co-powered by the protogalaxy and its cohort of smaller companions populating the filaments. Despite such an impressive blow out, the smooth filamentary material is hardly affected at these redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349CrossRefGoogle Scholar
Bouwens, R., et al. 2007, ApJ, 670, 928CrossRefGoogle Scholar
Bouwens, R., et al. 2008, ApJ, 686, 230CrossRefGoogle Scholar
Brooks, A. M., Governato, F., Quinn, T., Brook, C. B., & Wadsley, J. 2009, ApJ, 694, 396CrossRefGoogle Scholar
Calzetti, D, Kinney, A., & Storchi-Bergmann, T 1994, ApJ, 429, 582CrossRefGoogle Scholar
Dekel, A. & Birnboim, Y. 2006, MNRAS, 368, 2CrossRefGoogle Scholar
Devriendt, J. E. G., Guiderdoni, B., & Sadat, R. 1999, A&A, 350, 381Google Scholar
Dubois, Y. & Teyssier, R. 2008, A&A, 477, 79Google Scholar
Dunkley, J., et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Guiderdoni, B. & Rocca-Volmerange, B. 1987, A&A, 186, 1Google Scholar
Haardt, F. & Madau, P. 1996, ApJ, 461, 20CrossRefGoogle Scholar
Heckman, T. et al. 2005, ApJ, 619, L35CrossRefGoogle Scholar
Keres, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2CrossRefGoogle Scholar
Ocvirk, P., Pichon, C., & Teyssier, R. 2008, MNRAS, 390, 1326Google Scholar
Spergel, D., et al. 2003, ApJS, 148, 175CrossRefGoogle Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289CrossRefGoogle Scholar
Steidel, C., et al. 1999, ApJ, 519, 1CrossRefGoogle Scholar
Teyssier, R. 2002, A&A, 385, 337Google Scholar
White, S. & Rees, M. 1978, MNRAS, 183, 341CrossRefGoogle Scholar