Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T22:03:55.741Z Has data issue: false hasContentIssue false

Thousands of Milky Ways: galaxy satellites and building blocks

Published online by Cambridge University Press:  13 April 2010

Nelson Padilla
Affiliation:
Departamento de Astronomía y Astrofísica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: npadilla@astro.puc.cl
Claudia Lagos
Affiliation:
Departamento de Astronomía y Astrofísica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: npadilla@astro.puc.cl
Sofía Cora
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas de la Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata, (CCT La Plata, CONICET, UNLP), Observatorio Astronómico, Paseo del Bosque S/N, 1900 La Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A semi-analytic model of galaxy formation with and without active galactic nuclei feedback is used to study the nature of possible building blocks (BBs) of z = 0 galaxies, including those of Milky-Way types. We find that BBs can show an important range of properties arising from environmental variables such as host halo mass, and whether a galaxy is a satellite within its host halo; the stellar formation histories are comparatively faster and the chemical enrichment is more efficient in BBs than in surviving satellites, in accordance with recent metallicity measurements for the Milky Way. These results can be used in combination with observational constraints to continue probing the ability of the cold dark-matter scenario to reproduce the history of galaxy demography in the Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bullock, J. S., & Johnston, K. V., 2005, ApJ, 635, 931CrossRefGoogle Scholar
Cora, S. A., Tornatore, L., Tozzi, P., & Dolag, K., 2008, MNRAS, 386, 96CrossRefGoogle Scholar
Cowie, L., Songaila, A., Hu, E., & Cohen, J. G., 1996 AJ, 112, 839Google Scholar
Dolag, K., Vazza, F., Brunetti, G., & Tormen, G., 2005, MNRAS, 364, 753CrossRefGoogle Scholar
Drory, N., Salvato, M., Gabasch, A., Bender, R., Hopp, U., Feulner, G., & Pannella, M., 2005, ApJ, 619, 131Google Scholar
Geisler, D., Wallerstein, G., Smith, V. V., & Casetti-Dinescu, D. I., 2007, PASP, 119, 939CrossRefGoogle Scholar
Hopkins, A., Rao, S., & Turnshek, D., 2005, ApJ, 630, 108.Google Scholar
Lagos, C., Cora, S., & Padilla, N., 2008, MNRAS, 388, 587CrossRefGoogle Scholar
Okamoto, T., Eke, V. R., Frenk, C. S., & Jenkins, A., 2005, MNRAS, 363, 1299Google Scholar
Press, W. H., & Schechter, P., 1974, ApJ, 187, 425Google Scholar
Sanchez, A., et al. , 2006, MNRAS, 366, 189.CrossRefGoogle Scholar
Searle, L. & Zinn, R., 1978, ApJ, 225, 357Google Scholar
Simon, J. D., & Geha, M., 2007, ApJ, 670, 313CrossRefGoogle Scholar