Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T02:16:45.561Z Has data issue: false hasContentIssue false

An analysis of the composite stellar population in M32

Published online by Cambridge University Press:  13 April 2010

P. Coelho
Affiliation:
Núcleo de Astrofísica Teórica, Univ. Cruzeiro do Sul, email: paula.coelho@cruzeirodosul.edu.br
C. Mendes de Oliveira
Affiliation:
Depto. de Astronomia, Universidade de São Paulo, email: oliveira@astro.iag.usp.br
R. Cid Fernandes
Affiliation:
Depto. de Física, Universidade Federal de Santa Catarina, email: cid@astro.ufsc.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtained long-slit spectra of high S/N of the galaxy M32 with the GMOS Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. As our main result, we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1reff) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear, and may be a contamination from horizontal branch stars, blue stragglers or a true young population previously unidentified (Monachesi et al., this volume). We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z] ≤ −1, which is not found by Grillmair et al.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Alonso-García, J., Mateo, M., & Worthey, G. 2004, AJ, 127, 868CrossRefGoogle Scholar
Bekki, K., Couch, W. J., Drinkwater, M. J., & Gregg, M. D. 2001, ApJL, 557, L39CrossRefGoogle Scholar
Bender, R., Burstein, D., & Faber, S. M., 1992, ApJ, 399, 462CrossRefGoogle Scholar
Brown, T., Bowers, C., Kimble, R., Sweigart, A., & Ferguson, H. C. 2000, ApJ, 532, 308CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363CrossRefGoogle Scholar
Coelho, P., Mendes de Oliveira, C., & Fernandes, R. C., 2009, MNRAS, 396, 624CrossRefGoogle Scholar
Davidge, T. J. & Jensen, J. B. 2007, AJ, 133, 576CrossRefGoogle Scholar
Grillmair, C. J., Lauer, T. R., Worthey, G. et al. 1996, AJ, 112, 1975CrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216CrossRefGoogle Scholar
Le Borgne, D., Rocca-Volmerange, B., Prugniel, P. et al. 2004, A&A, 425, 881Google Scholar
Rose, J., Arimoto, N., Caldwell, N., Schiavon, R., Vazdekis, A., & Yamada, Y. 2005, AJ, 129, 712CrossRefGoogle Scholar
Ziegler, B. L. & Bender, R. 1998, A&A, 330, 819Google Scholar