Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T18:15:00.381Z Has data issue: false hasContentIssue false

A cometary perspective of Enceladus

Published online by Cambridge University Press:  06 April 2010

Daniel C. Boice
Affiliation:
Space Science & Engineering Div., Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238USA email: dboice@swri.edu, rgoldstein@swri.edu
Raymond Goldstein
Affiliation:
Space Science & Engineering Div., Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238USA email: dboice@swri.edu, rgoldstein@swri.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Icy plumes venting from Enceladus draw obvious comparisons to such features seen in comets. This paper outlines a consistent evolution from cometary activity to larger icy bodies in the outer solar system. The major differences are due to the systematic effects of increased gravity, including more spherical solid bodies (self-gravity), less porosity, the possible existence of liquid water due to internal sources of heat (Enceladus) versus possible cometary cyrovolcanism, internal inhomogeneities leading to jet-like features, and the possibility of a quasi-bound dusty gas atmosphere, as opposed to the extensive exospheres of comets. Similarities exist also, including gas and dust emission and the filamentary nature of jet-like features (caused by surface topography in comets), surface evolution by dust accumulation, heat and gas transport through the surface layers, among others. Initial results regarding the plume chemistry and comparisons to CAPS ion data show similarities too. Others have considered additional effects such as, charging of particles, micrometeorite impacts and complex interactions with the E-ring neutrals and plasma in great detail so these topics remain outside the scope of this paper.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Belton, M. J. S., Feldman, P. D., A'Hearn, M. F., & Carcich, B. 2008, Icarus, 198, 189CrossRefGoogle Scholar
Boice, D. C. & Goldstein, R. 2008, Eos Trans. AGU, 89 (53), #P23B-1368Google Scholar
Boice, D. C., Stern, S. A., & Huebner, W. F. 1991, LPSC XXII, 22, 121Google Scholar
Boice, D. C. & Huebner, W. F. 1993, in: Huebner, W. F. (ed.), Workshop on the Activity of Distant Comets (San Antonio: SwRI), p. 134Google Scholar
Goldstein, R., Boice, D. C., Young, D. T., Reisenfeld, D. B., & Smith, H. T. 2008, Eos Trans. AGU, 89 (53), #P23B-1382Google Scholar
Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W.-H., Leblanc, F., McGrath, M. A., Shematovich, V. I., Strobel, D. F., & Waite, J. H. 2008, Space Science Reviews, 139, 355Google Scholar
Jurac, S., McGrath, M. A., Johnson, R. E., Richardson, J. D., Vasyliunas, V. M., & Eviatar, A. 2002, Geophys. Res. Lett., 29, 25Google Scholar
Jurac, S. & Richardson, J. D. 2005, J. Geophys. Res., 110, A09220Google Scholar
Kieffer, S. W., Lu, X., Bethke, C. M., Spencer, J. R., Marshak, S., & Navrotsky, A. 2006, Science, 314, 1764Google Scholar
Meyer, J. & Wisdom, J. 2008, Icarus, 198, 178Google Scholar
Nicholson, P. D., Showalter, M. R., Dones, L., French, R. G., Larson, S. M., Lissauer, J. J., MeGhee, C. A., Seitzer, P., Sicardy, B., & Danielson, G. E. 1996, Science, 272, 509Google Scholar
Ojakangas, G. W. & Stevenson, D. J. 1986, Icarus, 66, 341Google Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T. V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J. A., Del Genio, A. D., Dones, L., Murray, C. D., & Squyres, S. 2006, Science, 311, 1393CrossRefGoogle Scholar
Schmidt, H. U., Wegmann, R., Huebner, W. F., & Boice, D. C. 1988, Comp. Phys. Comm., 49, 17CrossRefGoogle Scholar
Shemansky, D. E., Matheson, P., Hall, D. T., Hu, H.-Y., & Tripp, T. M. 1993, Nature 363, 329Google Scholar
Spahn, U., Schmidt, J, Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A. J., Economou, T., & Grün, E. 2006, Science, 311, 1416Google Scholar
Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., & Lopes, R. M. C. 2006, Science, 311, 1401CrossRefGoogle Scholar
Waite, J. H., Combi, M. R., Ip, W.-H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., & Tseng, W.-L. 2006, Science, 311, 1419Google Scholar