Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T22:14:38.180Z Has data issue: false hasContentIssue false

Globular cluster abundances: the role of asymptotic giant branch stars

Published online by Cambridge University Press:  18 January 2010

Amanda I. Karakas*
Affiliation:
Mount Stromlo Observatory, Australian National University, Weston Creek ACT 2611, Australia email: akarakas@mso.anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the more popular theories to account for the abundance anomalies in globular cluster stars is the ‘self-pollution scenario,’ where the polluters were a previous generation of intermediate-mass asymptotic giant branch (AGB) stars. This idea has proved attractive because: (i) the hot-bottom burning experienced by these objects qualitatively provides an ideal proton-capture environment to produce helium and convert C and O to N, Ne to Na and Mg to Al, and (ii) the slow winds from these stars allow their retention by the cluster's gravitational potential. New stellar yields from low-metallicity AGB models are presented and compared to abundances derived in globular clusters. We also discuss external pollution and inhomogeneous-pollution models that use AGB stars as polluters. Current models of AGB stars cannot match all observational features of globular cluster stars. However, stellar modelling uncertainties are considerable and suggest AGB stars should not be ruled out just yet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bekki, K. & Norris, J. E. 2006, ApJ (Letters), 637, L109CrossRefGoogle Scholar
Bekki, K., Campbell, S. W., Lattanzio, J. C., & Norris, J. E. 2007, MNRAS, 377, 335CrossRefGoogle Scholar
Bonifacio, P., Pasquini, L., Molaro, P., Carretta, E., François, P., Gratton, R. G., James, G., Sbordone, L., Spite, F., & Zoccali, M. 2007, A&A, 470, 153Google Scholar
Cannon, R. D., Croke, B. F. W., Bell, R. A., Hesser, J. E., & Stathakis, R. A. 1998, MNRAS, 298, 601CrossRefGoogle Scholar
Cohen, J. G., Briley, M. M., & Stetson, P. B. 2005, AJ, 130, 1177CrossRefGoogle Scholar
Cohen, J. G. & Meléndez, J. 2005, AJ, 129, 303CrossRefGoogle Scholar
Cottrell, P. L. & Da Costa, G. S. 1981, ApJ (Letters), 245, L79CrossRefGoogle Scholar
D'Antona, F. & Caloi, V. 2004, ApJ, 611, 871CrossRefGoogle Scholar
Denissenkov, P. A. & Herwig, F. 2003, ApJ (Letters), 590, L99CrossRefGoogle Scholar
El Eid, M. F. & Champagne, A. E. 1995, ApJ, 451, 298CrossRefGoogle Scholar
Fenner, Y., Campbell, S., Karakas, A. I., Lattanzio, J. C., & Gibson, B. K. 2004, MNRAS, 353, 789CrossRefGoogle Scholar
García–Hernández, D. A., Manchado, A., Lambert, D. L., Plez, B., García-Lario, P., D'Antona, F., Lugaro, M., Karakas, A. I., & van Raai, M. 2009, ApJ (Letters), 705, L31CrossRefGoogle Scholar
Gratton, R. G., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Gratton, R. G., et al. 2001, A&A, 369, 87Google Scholar
Gratton, R. G., Sneden, C., Carretta, E., & Bragaglia, A. 2000, A&A, 354, 169Google Scholar
Hale, S. E., Champagne, A. E., Iliadis, C., Hansper, V. Y., Powell, D. C., & Blackmon, J. C. 2004, Phys. Rev. C, 70, 045802CrossRefGoogle Scholar
Herwig, F. 2004, ApJ, 605, 425CrossRefGoogle Scholar
Izzard, R. G., Lugaro, M., Karakas, A. I., Iliadis, C., & van Raai, M. 2007, A&A, 466, 641Google Scholar
James, G. et al. 2004, A&A, 414, 1071Google Scholar
Karakas, A. I., Lugaro, M., Wiescher, M., Goerres, J., & Ugalde, C., 2006, ApJ, 643, 471CrossRefGoogle Scholar
Karakas, A. I., Fenner, Y., Sills, A., Campbell, S. W., & Lattanzio, J. C. 2006, ApJ, 652, 1240CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2007, PASA, 24, 103CrossRefGoogle Scholar
Karakas, A. I. 2009, MNRAS, submittedGoogle Scholar
Kraft, R. P. 1994, PASP, 106, 553CrossRefGoogle Scholar
Kraft, R. P., Sneden, C., Smith, G. H., Shetrone, M. D., Langer, G. E., & Pilachowski, C. A. 1997, AJ, 113, 279CrossRefGoogle Scholar
Marcolini, A., Gibson, B. K., Karakas, A. I., & Sánchez-Blázquez, P. 2009, MNRAS, 395, 719CrossRefGoogle Scholar
Pasquini, L., Bonifacio, P., Molaro, P., François, P., Spite, F., Gratton, R. G., Carretta, E., & Wolff, B. 2005, A&A, 441, 549Google Scholar
Renzini, A. 2008, MNRAS, 391, 354CrossRefGoogle Scholar
Ramírez, S. V. & Cohen, J. G. 2003, AJ, 125, 224CrossRefGoogle Scholar
Shetrone, M. D. 1996, AJ 112, 1517CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1989, ApJ (Letters), 345, L75CrossRefGoogle Scholar
Smith, V. V., Suntzeff, N. B., Cunha, K., Gallino, R., Busso, M., Lambert, D. L., & Straniero, O. 2000, AJ, 119, 1239CrossRefGoogle Scholar
Smith, V. V., Cunha, K., Ivans, I. I., Lattanzio, J. C., Campbell, S., & Hinkle, K. H. 2005, ApJ, 633, 392CrossRefGoogle Scholar
Thoul, A., Jorissen, A., Goriely, S., Jehin, E., Magain, P., Noels, A., & Parmentier, G. 2002, A&A, 383, 491Google Scholar
Ventura, P. & D'Antona, F. 2005, A&A, 431, 279Google Scholar
Ventura, P. & D'Antona, F. 2008, A&A, 479, 805Google Scholar
Ventura, P. & D'Antona, F. 2009, A&A, 499, 835Google Scholar
Ventura, P., D'Antona, F., & Mazzitelli, I. 2001, A&A, 393, 215Google Scholar
Wylie, E. C., Cottrell, P. L., Sneden, C. A., & Lattanzio, J. C. 2006, ApJ, 649, 248CrossRefGoogle Scholar
Yong, D., Grundahl, F., Lambert, D. L., Nissen, P. E., & Shetrone, M. D. 2003, A&A, 402, 985Google Scholar
Yong, D., Grundahl, F., Nissen, P. E., Jensen, H. R., & Lambert, D. L. 2005, A&A, 438, 875Google Scholar
Yong, D., Aoki, W., Lambert, D. L., & Paulson, D. B. 2006, ApJ, 639, 918CrossRefGoogle Scholar
Yong, D., Meléndez, J., Cunha, K., Karakas, A. I., Norris, J. E., & Smith, V. V. 2008, ApJ, 689, 1020CrossRefGoogle Scholar
Yong, D., Karakas, A. I., Lambert, D. L., Chieffi, A., & Limongi, M. 2008, ApJ, 689, 1031CrossRefGoogle Scholar
Yong, D., Grundahl, F., D'Antona, F., Karakas, A. I., Lattanzio, J. C., & Norris, J. E. 2009, ApJ (Letters), 695, L62CrossRefGoogle Scholar