Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T03:30:51.170Z Has data issue: false hasContentIssue false

How accurately can we age-date solar-type dwarfs using activity/rotation diagnostics?

Published online by Cambridge University Press:  01 October 2008

Eric E. Mamajek*
Affiliation:
Department of Physics & Astronomy, University of Rochester, Rochester, NY 14624USA email: emamajek@pas.rochester.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well established that activity and rotation diminishes during the life of sun-like main sequence (~F7-K2V) stars. Indeed, the evolution of rotation and activity among these stars appears to be so deterministic that their rotation/activity diagnostics are often utilized as estimators of stellar age. A primary motivation for the recent interest in improving the ages of solar-type field dwarfs is in understanding the evolution of debris disks and planetary systems. Reliable isochronal age-dating for field, solar-type main sequence stars is very difficult given the observational uncertainties and multi-Gyr timescales for significant structural evolution. Observationally, significant databases of activity/rotation diagnostics exist for field solar-type field dwarfs (mainly from chromospheric and X-ray activity surveys). But how well can we empirically age-date solar-type field stars using activity/rotation diagnostics? Here I summarize some recent results for F7-K2 dwarfs from an analysis by Mamajek & Hillenbrand (2008), including an improved “gyrochronology” [Period(color, age)] calibration, improved chromospheric (RHK) and X-ray (log(LX/Lbol)) activity vs. rotation (via Rossby number) relations, and a chromospheric vs. X-ray activity relation that spans four orders of magnitude in log(LX/Lbol). Combining these relations, one can produce predicted chromospheric and X-ray activity isochrones as a function of color and age for solar type dwarfs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Ayres, T. R. 1997, Jnl Geophys. Res., 102, 1641CrossRefGoogle Scholar
Baker, J., Bizzarro, M., Wittig, N., Connelly, J., & Haack, H. 2005, Nature, 436, 1127CrossRefGoogle Scholar
Baliunas, S., Sokoloff, D., & Soon, W. 1996, ApJ, 457, L99CrossRefGoogle Scholar
Barnes, S. A. 2007, ApJ, 669, 1167CrossRefGoogle Scholar
Barrado y Navascués, D., Stauffer, J. R., & Jayawardhana, R. 2004, ApJ, 614, 386CrossRefGoogle Scholar
Barry, D. C. 1988, ApJ, 334, 436CrossRefGoogle Scholar
de Bruijne, J. H. J., Hoogerwerf, R., & de Zeeuw, P. T. 2001, A&A, 367, 111Google Scholar
Cash, W., Kasdin, J., Seager, S., & Arenberg, J. 2005, Proc. SPIE, 5899, 274Google Scholar
Donahue, R. A., Saar, S. H., & Baliunas, S. L. 1996, ApJ, 466, 384CrossRefGoogle Scholar
Eggenberger, P. et al. , 2004, A&A, 417, 235Google Scholar
Gray, R. O. et al. , 2006, AJ, 132, 161CrossRefGoogle Scholar
Güdel, M. 2007, Living Reviews in Solar Physics, 4, 3CrossRefGoogle Scholar
Hempelmann, A. et al. , 1995, A&A, 294, 515Google Scholar
Henry, T. J., Soderblom, D. R., Donahue, R. A., & Baliunas, S. L. 1996, AJ, 111, 439CrossRefGoogle Scholar
Houdek, G. & Gough, D. O. 2008, IAU Symposium, 252, 149CrossRefGoogle Scholar
Kaltenegger, L., Traub, W. A., & Jucks, K. W. 2007, ApJ, 658, 598CrossRefGoogle Scholar
Kawaler, S. D. 1988, ApJ, 333, 236CrossRefGoogle Scholar
Mamajek, E. E., Barrado y Navascués, D., Randich, S., Jensen, E. L. N., Young, P. A., Miglio, A., & Barnes, S. A. 2008, 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 384, 374Google Scholar
Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Montesinos, B., Thomas, J. H., Ventura, P., & Mazzitelli, I. 2001, MNRAS, 326, 877CrossRefGoogle Scholar
Mosser, B. et al. , 2008, A&A, 488, 635Google Scholar
Nordström, B. et al. , 2004, A&A, 418, 989Google Scholar
Noyes, R. W. et al. , 1984, ApJ, 279, 763CrossRefGoogle Scholar
Randich, S., Schmitt, J. H. M. M., Prosser, C. F., & Stauffer, J. R. 1996, A&A, 305, 785Google Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Soderblom, D. R., Duncan, D. K., & Johnson, D. R. H. 1991, ApJ, 375, 722CrossRefGoogle Scholar
Sterzik, M. F. & Schmitt, J. H. M. M. 1997, AJ, 114, 1673CrossRefGoogle Scholar
Takeda, G. et al. , 2007, ApJS, 168, 297CrossRefGoogle Scholar
Thévenin, F. et al. , 2002, A&A, 392, L9Google Scholar
Valenti, J. A. & Fischer, D. A. 2005, ApJS, 159, 141 (VF05)CrossRefGoogle Scholar
Vaughan, A. H. & Preston, G. W. 1980, PASP, 92, 385CrossRefGoogle Scholar
Walter, F. M. & Barry, D. C. 1991, The Sun in Time, 633Google Scholar
Wilson, O. C. 1963, ApJ, 138, 832CrossRefGoogle Scholar
Wright, J. T., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2004, ApJS, 152, 261CrossRefGoogle Scholar