Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T06:58:37.364Z Has data issue: false hasContentIssue false

Age-related observations of low mass pre-main and young main sequence stars

Published online by Cambridge University Press:  01 October 2008

Lynne A. Hillenbrand*
Affiliation:
California Institute of Technology, MC 105-24, Pasadena, CA 91125, (USA) email: lah@astro.caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This overview summarizes the age dating methods available for young sub-solar mass stars. Pre-main sequence age diagnostics include the Hertzsprung-Russell (HR) diagram, spectroscopic surface gravity indicators, and lithium depletion; asteroseismology is also showing recent promise. Near and beyond the zero-age main sequence, rotation period or vsini and activity (coronal and chromospheric) diagnostics along with lithium depletion serve as age proxies. Other authors in this volume present more detail in each of the aforementioned areas. Herein, I focus on pre-main sequence HR diagrams and address the questions: Do empirical young cluster isochrones match theoretical isochrones? Do isochrones predict stellar ages consistent with those derived via other independent techniques? Do the observed apparent luminosity spreads at constant effective temperature correspond to true age spreads? While definitive answers to these questions are not provided, some methods of progression are outlined.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Ammler, M., Joergens, V., & Neuhauser, R., 2005, A&A, 440, 1127CrossRefGoogle Scholar
Ballesteros-Paredes, J., Hartmann, L., & Vázquez-Semadeni, E., 1999, ApJ, 527, 285CrossRefGoogle Scholar
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1995, ApJL, 446, 35CrossRefGoogle Scholar
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, AA, 337, 403Google Scholar
Burningham, B., Naylor, T., Littlefair, S. P., & Jeffries, R. D., 2005, MNRAS, 363, 1389CrossRefGoogle Scholar
D'Antona, F. & Mazzitelli, I. 1994, ApJS, 90, 467CrossRefGoogle Scholar
D'Antona, F. & Mazzitelli, I. 1997, in Cool stars in Clusters and Associations, ed. Pallavicini, R., & Micela, G., Mem. S. A. It., 68, 807Google Scholar
Da Rio, N., Robberto, M., Soderblom, D. R., Panagia, N., Hillenbrand, L. A., Palla, F., & Stassun, K., 2009, ApJ, submittedGoogle Scholar
Elmegreen, B. G., 2000, ApJ, 530, 277CrossRefGoogle Scholar
Ezer, D. & Cameron, A. G. W., 1967, Can. J. Phys., 45, 3429CrossRefGoogle Scholar
Hartigan, P., Strom, K. M., & Strom, S. E., 1994, ApJ, 427, 961CrossRefGoogle Scholar
Hartmann, L. W., 2001, AJ, 121, 1030CrossRefGoogle Scholar
Hillenbrand, L. A., 1997, AJ, 113, 1733CrossRefGoogle Scholar
Hillenbrand, L. A., Bauermeister, A., & White, R. J., 2008, ASPC, 384, 200Google Scholar
Iben, I. & Talbot, R., 1966, ApJ, 144, 968CrossRefGoogle Scholar
Kenyon, S. J. & Hartmann, L. W., 1990, ApJ, 349, 197CrossRefGoogle Scholar
Kirkpatrick, J. D., Cruz, K. L., Barman, T. S., Burgasser, A. J., et al. , 2008, ApJ, 689, 1295CrossRefGoogle Scholar
Kraus, A. L. & Hillenbrand, L. A., 2009, ApJ, submitted.Google Scholar
Mamajek, E. E. & Hillenbrand, L. A., 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Marconi, M. & Palla, F., 1998, ApJ, 507, 141CrossRefGoogle Scholar
Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R., & Hauschildt, P. H., 2008, ApJ, 689, 1127CrossRefGoogle Scholar
Mouschovias, T. C. 1976, ApJ, 207, 141CrossRefGoogle Scholar
Nelson, L. A., Rappaport, S., & Chiang, E., 1993, ApJ, 413, 364CrossRefGoogle Scholar
Palla, F. & Barraffe, I., 2005Google Scholar
Palla, F., & Stahler, S. W. 1993, ApJ, 418, 414CrossRefGoogle Scholar
Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772CrossRefGoogle Scholar
Palla, F., Randich, S., Pavlenko, Y. V., Flaccomio, E., & Pallavicini, R., 2007, ApJ, 659, L41CrossRefGoogle Scholar
Palla, F., Randich, S., Flaccomio, E., & Pallavicini, R., 2005, ApJ, 626, L49CrossRefGoogle Scholar
Prato, L., Greene, T. P., & Simon, M., 2003, ApJ, 584, 853CrossRefGoogle Scholar
Schiavon, R. P., Batalha, C., & Barbuy, B., 1995, A&A 301, 840Google Scholar
Sestito, P., Palla, F., & Randich, S, 2008, A&A, 487, 965.Google Scholar
Shu, F. H., 1977, ApJ, 214, 488CrossRefGoogle Scholar
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARAA, 25, 23CrossRefGoogle Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Simon, M., Ghez, A. M., Leinert, Ch., 1993, ApJ, 408, L33CrossRefGoogle Scholar
Song, I., Bessell, M. S., & Zuckerman, B., 2002, ApJ, 581, L43CrossRefGoogle Scholar
Slesnick, C. L., 2008, PhD thesis, California Institute of TechnologyGoogle Scholar
Slesnick, C. L., Carpenter, J. M., & Hillenbrand, L. A., 2006, AJ, 131, 3016CrossRefGoogle Scholar
Slesnick, C. L., Hillenbrand, L. A., & Carpenter, J. M., 2008, ApJ, 688, 377CrossRefGoogle Scholar
Steele, I. A. & Jameson, R. F., 1995, MNRAS, 272, 630CrossRefGoogle Scholar
Swenson, F. J., Faulkner, J., Rogers, F. J., & Iglesias, 1994, ApJ, 425, 286CrossRefGoogle Scholar
White, R. J. & Hillenbrand, L. A., 2005, ApJ, 621, L65CrossRefGoogle Scholar
White, R. J., Ghez, A. M., Reid, I. N., & Schultz, G., 1999, ApJ, 520, 811CrossRefGoogle Scholar
Yi, S., Kim, Y.-C., & Demarque, P. 2003, ApJS, 144, 259CrossRefGoogle Scholar
Yi, S., Demarque, P., & Kim, Y.-C., 2004, Ap&SS, 291, 261Google Scholar
Yi, S., Demarque, P., Kim, Y. -C., Lee, Y.-W., Ree, C. H., Lejeune, T., & Barnes, S. 2001, ApJS, 136, 417CrossRefGoogle Scholar
Zwintz, K., 2008, ApJ, 673, 1088CrossRefGoogle Scholar