Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T10:17:10.008Z Has data issue: false hasContentIssue false

QUIVERS, LONG EXACT SEQUENCES AND HORN TYPE INEQUALITIES II

Published online by Cambridge University Press:  01 May 2009

CALIN CHINDRIS*
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN, USA e-mail: chindris@math.umn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the set of all m-tuples (λ(1), . . ., λ(m)) of possible types of finite abelian p-groups Mλ(1), . . ., Mλ(m) for which there exists a long exact sequence Mλ(1) → ⋅⋅⋅ → Mλ(m). When m=3, we recover W. Fulton's (Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients (Special Issue: Workshop on Geometric and combinatorial Methods in the Hermitian Sum Spectral Problem), Linear Algebra Appl. 319(1–3) (2000), 23–36) results on the possible eigenvalues of majorized Hermitian matrices.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2008

References

REFERENCES

1.Chindris, C., Quivers, long exact sequences and Horn type inequalities, J. Algebra 320 (1) (2008), 128157.CrossRefGoogle Scholar
2.Derksen, H. and Weyman, J., Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (3) (2000), 467479.CrossRefGoogle Scholar
3.Derksen, H. and Weyman, J., The combinatorics of quiver representations, Preprint, arXiv.math.RT/0608288, 2006.Google Scholar
4.Domokos, M. and Lenzing, H., Invariant theory of canonical algebras, J. Algebra 228 (2) (2000), 738762.CrossRefGoogle Scholar
5.Friedland, S., Finite and infinite dimensional generalizations of Klyachko's theorem, Linear Algebra Appl. 319 (1–3) (2000), 322.CrossRefGoogle Scholar
6.Fulton, W., Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients (Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem), Linear Algebra Appl. 319 (1–3) (2000), 2336.CrossRefGoogle Scholar
7.Kac, V. G., Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1) (1982), 141162.CrossRefGoogle Scholar
8.Klein, T., The multiplication of Schur-functions and extensions of p-modules, J. London Math. Soc. 43 (1968), 280284.CrossRefGoogle Scholar
9.Klyachko, A., Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (3) (1998), 419445.CrossRefGoogle Scholar
10.Schofield, A., Semi-invariants of quivers, J. London Math. Soc. (2) 43 (3) (1991), 385395.CrossRefGoogle Scholar
11.Schofield, A., General representations of quivers, Proc. London Math. Soc. (3) 65 (1) (1992), 4664.CrossRefGoogle Scholar
12.Schofield, A. and van den Bergh, M., Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math. (N.S.) 12 (1) (2001), 125138.CrossRefGoogle Scholar
13.Skowronski, A. and Weyman, J., Semi-invariants for canonical algebras, Manuscripta Math. 100 (1999), 391403.Google Scholar
14.Skowronski, A. and Weyman, J., The algebra of semi-invariants for quivers, Transformation groups 5 (4) (2000), 361402.CrossRefGoogle Scholar