Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T01:36:21.045Z Has data issue: false hasContentIssue false

The magnetic field structure in NGC 253 in presence of a galactic wind

Published online by Cambridge University Press:  01 November 2008

Volker Heesen
Affiliation:
Astronomisches Institut der Ruhr-Universität Bochum, 44780 Bochum, Germany email: heesen@astro.rub.de, dettmar@astro.rub.de
M. Krause
Affiliation:
Max-Planck-Institut für Radioastronomie, 53121 Bonn, Germany email: rbeck@mpifr-bonn.mpg.de, mkrause@mpifr-bonn.mpg.de
R. Beck
Affiliation:
Max-Planck-Institut für Radioastronomie, 53121 Bonn, Germany email: rbeck@mpifr-bonn.mpg.de, mkrause@mpifr-bonn.mpg.de
R.-J. Dettmar
Affiliation:
Astronomisches Institut der Ruhr-Universität Bochum, 44780 Bochum, Germany email: heesen@astro.rub.de, dettmar@astro.rub.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ray bulk speed as 300±30 km s−1, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bauer, M., Pietsch, W., Trinchieri, G., Breitschwerdt, D., Ehle, M., & Read, A. 2007, A&A 467, 979Google Scholar
Bauer, M., Pietsch, W., Trinchieri, G., Breitschwerdt, D., Ehle, M., Freyberg, M. J., & Read, A. M. 2008, A&A 489, 1029Google Scholar
Beck, R. 2009, these proceedingsGoogle Scholar
Breitschwerdt, D., McKenzie, J. F., & Voelk, H. J. 1991, A&A 245, 79Google Scholar
Carilli, C. L., Holdaway, M. A., Ho, P. T. P., & de Pree, C.G. 1992, ApJ 399, L59CrossRefGoogle Scholar
Carilli, C. L. 1996, A&A 305, 402Google Scholar
Field, G. B., Goldsmith, D. W., & Habing, H. J. 1969, ApJ 155, L149CrossRefGoogle Scholar
Heesen, V. 2008, PhD thesis, Ruhr-Universität Bochum, GermanyGoogle Scholar
Heesen, V., Beck, R., Krause, M., & Dettmar, R.-J., 2009a, A&A, in press; arXiv:0812.0346Google Scholar
Heesen, V., Krause, M., Beck, R., & Dettmar, R.-J. 2009b, to be submittedGoogle Scholar
Karachentsev, I. D., Grebel, E. K., Sharina, M. E., Dolphin, A. E., Geisler, D., Guhathakurta, P., Hodge, P. W., Karachentseva, V. E., Sarajedini, A., & Seitzer, P.A&A 404, 93CrossRefGoogle Scholar
Krause, M., Hummel, E., & Beck, R. 1989, A&A 217, 4Google Scholar
Krause, M. 2008, Magnetic Fields in the Universe II, eds. Esquivel, A. et al. , arXiv:0806.2060Google Scholar
Norman, C. A. & Ikeuchi, S. 1989, ApJ 345, 372CrossRefGoogle Scholar
Parker, E. N. 1992, ApJ 401, 137CrossRefGoogle Scholar
Schulz, H. & Wegner, G. 1992, A&A 266, 167Google Scholar
Strickland, D. K., Heckman, T. M., Weaver, K. A., & Dahlem, M. 2000, AJ 120, 2965CrossRefGoogle Scholar
Suchkov, A. A., Balsara, D. S., Heckman, T. M., & Leitherner, C. 1994, ApJ 430, 511CrossRefGoogle Scholar