Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T02:24:56.667Z Has data issue: false hasContentIssue false

Re-examining the correlation of complex solar type III radio bursts and solar energetic particles

Published online by Cambridge University Press:  01 September 2008

R. J. MacDowall
Affiliation:
NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA email: robert.macdowall@nasa.gov
I. G. Richardson
Affiliation:
Code 661, NASA Goddard Space Flight Center, Greenbelt, MD 20771, and CRESST and Department of Astronomy, University of Maryland, College Park, MD 20742 email: ian.g.richardson@nasa.gov
R. A. Hess
Affiliation:
NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA, and Wyle Information Systems Group, McLean, VA 22102 email: roger.hess@nasa.gov
G. Thejappa
Affiliation:
NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA, and Department of Astronomy, University of Maryland, College Park, MD 20742 email: thejappa.golla@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interplanetary radio observations provide important information on particle acceleration processes at the Sun and propagation of the accelerated particles in the solar wind. Cane et al. (2002) have drawn attention to a class of prominent radio bursts that accompany >20 MeV solar proton events. They call these bursts ‘type III-L’ because: they are fast drifting (like normal type III bursts associated with electrons accelerated at impulsive solar flares); they are Long-lasting compared to normal type III bursts; they occur Late compared to the onset of the related solar event; and, they commence at Lower frequencies (~100 MHz) than normal type III bursts, suggesting that they originate higher in the corona at ~0.5 Rs above the Sun. We report on an analysis of the correlated radio and SEP events during 1996-2006 using the Wind Waves and near-Earth SEP data sets, and discuss whether the characteristics of the complex type III bursts (at less than 14 MHz) will permit them to serve as proxies for SEP event occurrence and intensity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bougeret, J. L., et al. 1995, Space Sci. Rev., 71, 231Google Scholar
Cane, H. V., Stone, R. G., Fainberg, J., Stewart, R. T., Steinberg, J.-L., & Hoang, S. 1981, Geophys. Res. Lett., 8, 1285Google Scholar
Cane, H. V., Erickson, W. C., & Prestage, N. P. 2002, J. Geophys. Res., 107 (A10), 1315, doi:10.1029/2001JA000320Google Scholar
Dulk, G. A., Leblanc, Y., Bastian, T. S., & Bougeret, J. L. 2000, J. Geophys. Res., 105, 27,343Google Scholar
Kahler, S. W., Cliver, E. W., & Cane, H. V. 1986, Adv. Space Res., 6, 319Google Scholar
Klein, K.-L., Aurass, H., Soru-Escaut, I., & Kalman, B. 1997, A&A, 320, 612 (erratum 322, 1027)Google Scholar
Kundu, M. R., MacDowall, R. J., & Stone, R. G. 1990, Ap&SS, 165, 101Google Scholar
MacDowall, R. J., Kundu, M. R., & Stone, R. G. 1987 Solar Phys., 111, 397Google Scholar
MacDowall, R.J., Lara, A., Manoharan, P. K., Nitta, N. V., Rosas, A. M., & Bougeret, J. L. 2003, Geophys. Res. Lett., 30, 12, 8018, doi:10.1029/2002GL016624Google Scholar
Reiner, M. J., Karlicky, J. M., Jiricka, K., Aurass, H., Mann, G., & Kaiser, M. L. 2000, Astrophys. J., 530, 1049Google Scholar