Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T04:39:09.976Z Has data issue: false hasContentIssue false

Microwave observations with the RATAN-600 radio telescope: detection of the thermal emission sources

Published online by Cambridge University Press:  01 September 2008

Irina Yu. Grigoryeva
Affiliation:
Central Astronomical Observatory at Pulkovo RAS, 196140 Pulkovskoe sh., 65/1, St. Petersburg, Russia. email: irina19752004@mail.ru
Larisa K. Kashapova
Affiliation:
Institute of Solar-Terrestrial Physics SD RAS, Irkutsk, Russia. email: lkk@iszf.irk.ru
Moisey A. Livshits
Affiliation:
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, 142190 Troitsk, Russia. email: maliv@mail.ru
Valery N. Borovik
Affiliation:
Central Astronomical Observatory at Pulkovo RAS, 196140 Pulkovskoe sh., 65/1, St. Petersburg, Russia. email: irina19752004@mail.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on two off-limb radio sources of microwave emission which were detected in one-dimensional RATAN-600 solar scans of the post-eruptive loops: on December 2, 2003 (off west limb) and January 25, 2007 (east limb). The microwave spectra showed that the thermal emission was predominant at the early stage of the arcade formation with a small contribution of non-thermal emission. There were no high-energy particles in these events. The microwave spectra of the radio sources associated with the tops of postflare loops show the predominant thermal emission during one hour after the eruption. In case of a small contribution from accelerated particles to the microwave emission, there is a large amount of hot plasma in the region of the loop tops after the eruption.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Feldman, U., Seely, J. F., Doschek, G. A., Brown, C. M., Phillips, K. J. H., & Lang, J. 1995, ApJ, 446, 860CrossRefGoogle Scholar
Grechnev, V. V., Uralov, A. M., Zandanov, V. G., Rudenko, G. V., Borovik, V. N., Grigorieva, I. Y., Slemzin, V. A., Bogachev, S. A., Kuzin, S. V. & Zhitnik, I. A. 2006, PASJ, 113, 415.Google Scholar
Harra-Murnion, L. K., Schmieder, B., van Driel-Gesztelyi, L., Sato, J., Plunkett, S. P., Rudawy, P., Rompolt, B., Akioka, M., Sakao, T., & Ichimoto, K. 1995, AA, 337, 911Google Scholar
Korol‘kov, D. V. & Parijskij, Y. N. 1979, ST, 57, 324Google Scholar
Smith, D. M., Lin, R. P., Turin, P., Curtis, D. W., Primbsch, J. H., Campbell, R. D., Abiad, R., Schroeder, P., Cork, C. P., Hull, E. L., Landis, D. A., Madden, N. W., Malone, D., Pehl, R. H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I. S., Shirey, K., & Schwartz, R. 2002, Solar Phys., 210, 33CrossRefGoogle Scholar