Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T13:22:06.726Z Has data issue: false hasContentIssue false

Solar Differential Rotation of Compact Magnetic Elements and Polarity Reversal of the Sun

Published online by Cambridge University Press:  01 September 2008

Darejan Japaridze
Affiliation:
Georgian E. Kharadze National Astrophysical Observatory at Ilia Chavchavadze State University, A. Kazbegi Ave 2a, Tbilisi 0160, Georgia email: marinagig@yahoo.com
Marina Gigolashvili
Affiliation:
Georgian E. Kharadze National Astrophysical Observatory at Ilia Chavchavadze State University, A. Kazbegi Ave 2a, Tbilisi 0160, Georgia email: marinagig@yahoo.com
Vasili Kukhianidze
Affiliation:
Georgian E. Kharadze National Astrophysical Observatory at Ilia Chavchavadze State University, A. Kazbegi Ave 2a, Tbilisi 0160, Georgia email: marinagig@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The differential rotation of the compact elements of the large-scale magnetic fields is studied using Solar Synoptic Charts (1966–1986). It is revealed that compact magnetic elements with the similar polarity of the polar magnetic field of the Sun have a larger rotation rate than the elements with the opposite polarity at all stages in the cycle.

From the comparison of the experimental measuring data of the solar magnetic elements there are received the results: a) The differential rotations of the compact magnetic elements with negative and positive polarities have the similar behavior for the solar 20 and 21 cycles; b) It is established that in the rotation rate of compact magnetic elements there are present some variations at the time of polarity reversal of the Sun.

There is assumed that the physical understanding of the connections of differential rotation of compact magnetic elements and polarity reversal of the Sun depends upon establishing a connection between the temporal variability of spatially resolved solar magnetic elements and polar reversals.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

D'Azambuja, M. & D'Azambuja, L. 1948, Ann. Obs. Paris, 6, 1Google Scholar
DeRosa, M. L. 2005, ASP Conference Series, 346, 337Google Scholar
Durrant, C. J., Turner, J., & Wilson, P. R. 2002, Solar Phys., 211, 103CrossRefGoogle Scholar
Gigolashvili, M. Sh., Japaridze, D. R., & Kukhianidze, V. J. 2005, Solar Phys, 231, 23CrossRefGoogle Scholar
Gigolashvili, M. Sh., Japaridze, D. R., & Kukhianidze, V. J. 2005/2006, Science without Borders, 2, 136Google Scholar
Gigolashvili, M. Sh., Japaridze, D. R., Mdzinarishvili, T. G., Chargeishvili, B. B., & Kukhianidze, V. J. 2007, Advances in Space Research, 40, 7, 976Google Scholar
Gigolashvili, M. Sh., Japaridze, D. R., Pataraya, A. D., & Zaqarashvili, T. V. 1995, Solar Phys, 156, 221Google Scholar
Japaridze, D. R. & Gigolashvili, M. Sh. 1992, Solar Phys, 231, 23Google Scholar
Japaridze, D. R., Gigolashvili, M. Sh., & Kukhianidze, V. J. 2006, Sun and Geosphere, 1, 31Google Scholar
Japaridze, D. R., Gigolashvili, M. Sh., & Kukhianidze, V. J. 2007, Advances in Space Research, 40, 7, 1912Google Scholar
Makarov, V. I. & Sivaraman, K. R. 1989, Solar Phys, 123, 367CrossRefGoogle Scholar
Makarov, V. I. & Sivaraman, K. R. 1989, Solar Phys, 119, 35CrossRefGoogle Scholar
Makarov, V. I., Tlatov, A. G., & Callebaut, D. K. 1997, Solar Phys, 170, 373CrossRefGoogle Scholar
McIntosh, P. S., Willock, E. C., & Thompson, R. J. 1991 National Geophysical Data Center, 1Google Scholar
Newbegin, A. M. & Newton, H. W. 1931, The Observatory, 54, 20Google Scholar
Newton, H. W. 1924, MNRAS, 84, 431Google Scholar
Pulkkinen, P. & Tuominen, I. 1998, Astrophys., 338, 748Google Scholar
Snodgrass, H. B. 1992, ASP Conference Series, 27, 205Google Scholar