Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:59:19.875Z Has data issue: false hasContentIssue false

Effects of Supernova Feedback on the Formation of Galaxies

Published online by Cambridge University Press:  01 June 2008

Cecilia Scannapieco
Affiliation:
Max-Planck Institute for AstrophysicsKarl-Schwarzchild Str. 1, D85748, Garching, Germany email: cecilia@mpa-garching.mpg.de
Patricia B. Tissera
Affiliation:
Instituto de Astronomía y Física del EspacioCasilla de Correos 67, Suc. 28, 1428, Buenos Aires, Argentina
Simon D. M. White
Affiliation:
Max-Planck Institute for AstrophysicsKarl-Schwarzchild Str. 1, D85748, Garching, Germany email: cecilia@mpa-garching.mpg.de
Volker Springel
Affiliation:
Max-Planck Institute for AstrophysicsKarl-Schwarzchild Str. 1, D85748, Garching, Germany email: cecilia@mpa-garching.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effects of Supernova (SN) feedback on the formation of galaxies using hydrodynamical simulations in a ΛCDM cosmology. We use an extended version of the code GADGET-2 which includes chemical enrichment and energy feedback by Type II and Type Ia SN, metal-dependent cooling and a multiphase model for the gas component. We focus on the effects of SN feedback on the star formation process, galaxy morphology, evolution of the specific angular momentum and chemical properties. We find that SN feedback plays a fundamental role in galaxy evolution, producing a self-regulated cycle for star formation, preventing the early consumption of gas and allowing disks to form at late times. The SN feedback model is able to reproduce the expected dependence on virial mass, with less massive systems being more strongly affected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R., 2003, ApJ, 591, 499CrossRefGoogle Scholar
Governato, F., Willman, B., Mayer, L., Brooks, A., Stinson, G., Valenzuela, O., Wadsley, J., & Quinn, T., 2007, MNRAS, 374, 1479CrossRefGoogle Scholar
Martin, C. L., 2004, A&AS, 205, 8901Google Scholar
Navarro, J. F. & Benz, W., 1991, ApJ, 380, 320CrossRefGoogle Scholar
Navarro, J. F. & White, S. D. M., 1993, MNRAS, 265, 271CrossRefGoogle Scholar
Robertson, B., Yoshida, N., Springel, V., & Hernquist, L., 2004, ApJ, 606, 32CrossRefGoogle Scholar
Scannapieco, C., Tissera, P. B., White, S. D. M., & Springel, V., 2005, MNRAS, 364, 552CrossRefGoogle Scholar
Scannapieco, C., Tissera, P. B., White, S. D. M., & Springel, V., 2006, MNRAS, 371, 1125CrossRefGoogle Scholar
Scannapieco, C., Tissera, P. B., White, S. D. M., & Springel, V., 2008, MNRAS, in press (astro-ph/0804.3795)Google Scholar
Springel, V. & Hernquist, L., 2002, MNRAS, 333, 649CrossRefGoogle Scholar
Springel, V. & Hernquist, L., 2003, MNRAS, 339, 289CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
White, S. D. M. & Frenk, C. S., 1991, ApJ, 379, 52CrossRefGoogle Scholar
Zaritsky, D., Kennicutt, R. C. Jr., & Huchra, J. P., 1994, ApJ, 420, 87CrossRefGoogle Scholar