Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T16:37:19.563Z Has data issue: false hasContentIssue false

First Stars – Type Ib Supernovae Connection

Published online by Cambridge University Press:  01 June 2008

Ken'ichi Nomoto
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568, Japan email: nomoto@astron.s.u-tokyo.ac.jp Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Masaomi Tanaka
Affiliation:
Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Yasuomi Kamiya
Affiliation:
Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Nozomu Tominaga
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 113-0033, Japan
Keiichi Maeda
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568, Japan email: nomoto@astron.s.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The very peculiar abundance patterns observed in extremely metal-poor (EMP) stars can not be explained by conventional normal supernova nucleosynthesis but can be well-reproduced by nucleosynthesis in hyper-energetic and hyper-aspherical explosions, i.e., Hypernovae (HNe). Previously, such HNe have been observed only as Type Ic supernovae. Here, we examine the properties of recent Type Ib supernovae (SNe Ib). In particular, SN Ib 2008D associated with the luminous X-ray transient 080109 is found to be a more energetic explosion than normal core-collapse supernovae. We estimate that the progenitor's main sequence mass is MMS = 20 − 25M with an explosion of kinetic energy of EK ~ 6.0 × 1051 erg. These properties are intermediate between those of normal SNe and hypernovae associated with gamma-ray bursts. Therefore, such energetic SNe Ib could also make an important contribution to the chemical enrichment in the early Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aoki, W., et al. 2004, ApJ 608, 971CrossRefGoogle Scholar
Aoki, W., et al. 2006, ApJ 639, 897CrossRefGoogle Scholar
Aoki, W., et al. 2007, ApJ 660, 747CrossRefGoogle Scholar
Bailyn, C.D., Jain, R.K., Coppi, P., & Orosz, J.A. 1998, ApJ 499, 367CrossRefGoogle Scholar
Beers, T. & Christlieb, N. 2005, ARA&A 43, 531Google Scholar
Bessell, M. S. & Christlieb, N. 2005, in Hill, V. et al. (eds.), From Lithium to Uranium, Proc. IAU Symposium No. 228 (Cambridge: Cambridge Univ. Press), p. 237Google Scholar
Cayrel, R., et al. 2004, A&A 416, 1117Google Scholar
Christlieb, N., et al. 2002, Nature 419, 904CrossRefGoogle Scholar
Cohen, J.G., et al. 2007, ApJ 659, L161CrossRefGoogle Scholar
Depagne, E., et al. 2002, A&A 390, 187Google Scholar
Frebel, A., et al. 2005, Nature 434, 871CrossRefGoogle Scholar
Frebel, A., et al. 2007, ApJ 658, 534CrossRefGoogle Scholar
Galama, T., et al. 1998, Nature 395, 670CrossRefGoogle Scholar
Hill, V., François, P., & Primas, F. (eds.) 2005, From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Proc. IAU Symp. No. 228 (Cambridge: Cambridge Univ. Press)Google Scholar
Iwamoto, K., Mazzali, P. A., Nomoto, K., et al. 1998, Nature 395, 672CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science 309, 451CrossRefGoogle Scholar
Maeda, K., Nakamura, T., Nomoto, K., et al. 2002, ApJ 565, 405CrossRefGoogle Scholar
Maeda, K. & Nomoto, K. 2003, ApJ 598, 1163CrossRefGoogle Scholar
Malesani, J., et al. 2006, ApJ 609, L5CrossRefGoogle Scholar
Nomoto, K., et al. 2004, in Fryer, C. L. (ed.), Stellar Collapse (Astrophysics and Space Science: Kluwer), p. 277 (astro-ph/0308136)CrossRefGoogle Scholar
Nomoto, K., et al. 2006, Nuclear Phys A 777, 424 (astro-ph/0605725)CrossRefGoogle Scholar
Nomoto, K., et al. 2007, Nuovo Cinento 121, 1207 (astro-ph/0702472)Google Scholar
Norris, J. E., et al. 2007, ApJ 670, 774CrossRefGoogle Scholar
Tominaga, N., Tanaka, M., Nomoto, K., et al. 2005, ApJ 633, L97CrossRefGoogle Scholar
Tominaga, N., Maeda, K., Umeda, H., Nomoto, K., Tanaka, , et al. 2007, ApJ 657, L77CrossRefGoogle Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007, ApJ 660, 516CrossRefGoogle Scholar
Tominaga, N. 2007, ApJ submitted (arXiv:0711.4815)Google Scholar
Umeda, H. & Nomoto, K. 2002, ApJ 565, 385CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2005, ApJ 619, 427CrossRefGoogle Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARA&A 44, 507Google Scholar