Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T01:49:16.267Z Has data issue: false hasContentIssue false

A survey of 3.3 micron PAH emission in planetary nebulae using FLITECAM

Published online by Cambridge University Press:  01 February 2008

Erin C. Smith
Affiliation:
University of California, Los Angeles, Division of Astronomy and Astrophysics, 430 Portola Plaza, Los Angeles CA 90095 email: erincds@astro.ucla.edu
Ian S. McLean
Affiliation:
University of California, Los Angeles, Division of Astronomy and Astrophysics, 430 Portola Plaza, Los Angeles CA 90095 email: mclean@astro.ucla.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have performed a study of 3.3 micron PAH emission in planetary nebulae using ground-based observations with FLITECAM, one of a suite of instruments designed for airborne astronomy aboard SOFIA, NASA's Stratospheric Observatory for Infrared Astronomy. The survey was performed on the Shane 3 meter telescope at Lick Observatory as part of the ground-based commissioning of the FLITECAM grism spectroscopy mode. Spectral resolution of R ~ 1700 was obtained with direct-ruled KRS-5 grisms. Targets included AGB stars and sources showing PAH emission in KAO, ISO or IRAS observations. Additionally, several oxygen-rich nebulae were observed in order to test methodology. Twenty objects were surveyed, of which 11 showed PAH emission. In objects exhibiting PAH emission, the relationship between the nebular C/O ratio and PAH equivalent width was found, showing a detectable PAH emission cutoff at a nebular C/O ratio of 0.65 ± 0.28. Selected objects with detected PAH emission were further investigated to trace PAH emission spectral variation within individual nebulae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Cohen, M. & Barlow, M. J. 2005, MNRAS, 362, 1199CrossRefGoogle Scholar
Jourdain de Muizon, M., Cox, P., & Lequeux, J. 1990, A&AS, 83, 337Google Scholar
Kholtygin, A. F. 1998, A&A, 329, 691Google Scholar
Liu, Y., Liu, X.-W., Barlow, M. J., & Luo, S.-G. 2004, MNRAS, 353, 1251CrossRefGoogle Scholar
Lord, S. D. 1992, NASA TM103957Google Scholar
Mainzer, A. K. & McLean, I. S. 2003, ApJ, 597, 555CrossRefGoogle Scholar
McLean, I. S., Smith, E. C., Aliado, T., Brims, G., Kress, E., Magnone, K., Milburn, J., Oldag, A., Silvers, T., & Skulason, G. 2006, in: McLean, I. S. & Iye, M. (eds.), Proceedings of the SPIE, Volume 6269Google Scholar
Peeters, E., Hony, S., Van Kerckhoven, C., Tielens, A. G. G. M., Allamandola, L. J., Hudgins, D. M., & Bauschlicher, C. W. 2002, A&A, 390, 1089Google Scholar
Rinehart, S. A., Houck, J. R., Smith, J. D., & Wilson, J. C. 2002, MNRAS, 336, 66CrossRefGoogle Scholar
Roche, P. F., Lucas, P. W., Hoare, M. G., Aitken, D. K., & Smith, C. H. 1996, MNRAS, 280, 924CrossRefGoogle Scholar
Smith, E. C. & McLean, I. S. 2006, in: McLean, I. S. & Iye, M. (eds.), Proceedings of the SPIE, Volume 6269, p. 50Google Scholar
Tokunaga, A. T., Sellgren, K., Smith, R. G., Nagata, T., Sakata, A., & Nakada, Y. 1991, ApJ, 380, 452CrossRefGoogle Scholar
van Diedenhoven, B., Peeters, E., Van Kerckhoven, C., Hony, S., Hudgins, D. M., Allamandola, L. J., & Tielens, A. G. G. M. 2004, ApJ, 611, 928CrossRefGoogle Scholar