Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:09:29.059Z Has data issue: false hasContentIssue false

Chemical evolution of bulges at high redshift

Published online by Cambridge University Press:  01 July 2007

Antonio Pipino
Affiliation:
Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, U.K. email: axp@astro.ox.ac.uk Dipartimento di Astronomia, Universita di Trieste, Via G.B. Tiepolo 11, 34100 Trieste, Italy
Francesca Matteucci
Affiliation:
Dipartimento di Astronomia, Universita di Trieste, Via G.B. Tiepolo 11, 34100 Trieste, Italy
Annibale D'Ercole
Affiliation:
INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hint toward an outside-in formation in the context of the supernovae-driven wind scenario. The build-up of the chemical properties of the stellar populations inhabiting the galactic core is very fast. Therefore we predict a non significant evolution of both the mass-metallicity and the mass-[α/Fe] relations after the first 0.5 − 1 Gyr. In this framework we explain how the observed slopes, either positive or negative, in the radial gradient of the mean stellar [α/Fe], and their apparent lack of any correlation with all the other observables, can arise as a consequence of the interplay between star formation and metal-enhanced internal gas flows.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Annibali, F., Bressan, A., Rampazzo, R., Zeilinger, W. W., & Danese, L. 2007, A & A, 463, 455CrossRefGoogle Scholar
Ballero, S. K., Matteucci, F., Origlia, L., & Rich, R. M., 2007, A & A, 467, 123CrossRefGoogle Scholar
Fulbright, J. P., McWilliam, A. & Rich, M. 2006, ApJ, 636, 821CrossRefGoogle Scholar
Goudfrooij, P., Gorgas, J., Jablonka, P., 1999 Ap & SS, 269, 109CrossRefGoogle Scholar
Jablonka, P., Martin, P., & Arimoto, N. 1996, AL, 112, 1415Google Scholar
Jablonka, P., Gorgas, J. & Goudfroij, P. 2007, A & A, arXiv:0707.0561Google Scholar
Kroupa, P. 2001, MNRAS, 332, 231CrossRefGoogle Scholar
Matteucci, F. & Brocato, E. 1990, ApJ, 365, 539CrossRefGoogle Scholar
Mehlert, D., Thomas, D., Saglia, R. P., Bender, R., & Wegner, G. 2003, A&A, 407, 423Google Scholar
Ogando, R. L. C., Maia, M. A. G., Chiappini, C., Pellegrini, P. S., Schiavon, R. P., & da Costa, L. N. 2005 ApJ, 632, 61CrossRefGoogle Scholar
Pipino, A., D'Ercole, A., & Matteucci, F. 2007, arXiv:0706.2932Google Scholar
Pipino, A., Matteucci, F., & Chiappini, C. 2006 ApJ, 638, 739CrossRefGoogle Scholar
Proctor, R. N., Sansom, A. E., & Reid, I. N. 2000, MNRAS, 311, 37CrossRefGoogle Scholar
Rich, M. 1998, AJ, 95, 828CrossRefGoogle Scholar
Sanchez-Blazquez, P., Forbes, D. A., Strader, J., Brodie, J., & Proctor, R. 2007, astro-ph/0702572Google Scholar
Thomas, D., & Davies, R., 2006, MNRAS, 366, 510CrossRefGoogle Scholar
Zoccali, M., Renzini, A., Ortolani, S. et al. 2003, A & A, 399, 931CrossRefGoogle Scholar