Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T04:44:15.929Z Has data issue: false hasContentIssue false

Baroclinic generation of potential vorticity in an embedded planet-disk system

Published online by Cambridge University Press:  01 October 2007

Jianghui JI
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China email: jijh@pmo.ac.cn
Shangli OU
Affiliation:
High Performance Computing, Center for Computation and Technology/Information Technology Services, Louisiana State University, Baton Rouge, LA 70803 email: ou@cct.lsu.edu
Lin LIU
Affiliation:
Department of Astronomy, Nanjing University, Nanjing 210093, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use a multi-dimensional hydrodynamics code to study the gravitational interaction between an embedded planet and a protoplanetary disk with emphasis on the generation of vortensity (Potential Vorticity or PV) through a Baroclinic Instability. We show that the generation of PV is very common and effective in non-barotropic disks through the Baroclinic Instability, especially within the coorbital region. Our results also complement previous work that non-axisymmetric Rossby-Wave Instabilities (RWIs) are likely to develop at local minima of PV distribution that are generated by the interaction between a planet and an inviscid barotropic disk. The development of RWIs results in non-axisymmetric density blobs, which exert stronger torques onto the planet when they move to the vicinity of the planet. Hence, large amplitude oscillations are introduced to the time behavior of the total torque acted on the planet by the disk. In current simulations, RWIs do not change the overall picture of inward orbital migration but cause a non-monotonic behavior to the migration speed. As a side effect, RWIs also introduce interesting structures into the disk. These structures may help the formation of Earth-like planets in the Habitable Zone or Hot Earths interior to a close-in giant planet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baruteau, C. & Masset, F. 2008, IAU S249, this issueGoogle Scholar
Goldreich, P., Tremaine, S., 1978, ApJ, 222, 850CrossRefGoogle Scholar
Ida, S., & Lin, D.N.C. 2004, ApJ, 604, 388CrossRefGoogle Scholar
Ji, J., Kinoshita, H., Liu, L., & Li, G.Y. 2007, ApJ, 657, 1092CrossRefGoogle Scholar
Klahr, H.H., Bodenheimer, P., 2003, ApJ, 582, 869CrossRefGoogle Scholar
Klahr, H.H., Bodenheimer, P., 2006, ApJ, 639, 432CrossRefGoogle Scholar
Kley, W. 1999, MNRAS, 303, 696CrossRefGoogle Scholar
Koller, J., Li, H., Lin, D.N.C., 2003, ApJ, 596, 91CrossRefGoogle Scholar
Li, H., et al. , 2000, ApJ, 533, 1023CrossRefGoogle Scholar
Li, H., et al. 2005, ApJ, 624, 1003CrossRefGoogle Scholar
Lissauer, J. J. 1993, ARAA, 31, 129CrossRefGoogle Scholar
Masset, F.S., 2001, ApJ, 558, 453CrossRefGoogle Scholar
Masset, F.S., Papaloizou, J.C.B., 2003, ApJ, 588, 494CrossRefGoogle Scholar
Nelson, R.P., Papaloizou, J.C.B., Masset, F., Kley, W., 2000, MNRAS, 318, 18CrossRefGoogle Scholar
Ou, S., Tohline, J.E., 2006, ApJ, 651, 1068CrossRefGoogle Scholar
Pollack, J. B., et al. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413CrossRefGoogle Scholar
Safronov, V.S. 1969, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Moscow:Nauka)Google Scholar
Silverstone, M.D., et al. , 2006, ApJ, 639, 1138CrossRefGoogle Scholar
Stone, J.M., Norman, M.L., 1992, ApJS, 80, 753CrossRefGoogle Scholar
Tohline, J. E. 1980, ApJ, 235, 866CrossRefGoogle Scholar
de Val-borro, M., et al. 2006, MNRAS, 370, 529CrossRefGoogle Scholar
Ward, W. R. 1997, Icarus, 126, 261CrossRefGoogle Scholar
Zhang, H., Zhou, J.-L. 2008, IAU symposium 249: Exoplanets: Detection, Formation and Dynamics, eds. Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., p. 413Google Scholar