Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T17:48:46.912Z Has data issue: false hasContentIssue false

Dynamical Evolution of Rotating Globular Clusters with Embedded Black Holes

Published online by Cambridge University Press:  01 September 2007

J. Fiestas
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Heidelberg, Germany email: fiestas@ari.uni-heidelberg.de, oporth@ari.uni-heidelberg.de, spurzem@ari.uni-heidelberg.de
O. Porth
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Heidelberg, Germany email: fiestas@ari.uni-heidelberg.de, oporth@ari.uni-heidelberg.de, spurzem@ari.uni-heidelberg.de
R. Spurzem
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Heidelberg, Germany email: fiestas@ari.uni-heidelberg.de, oporth@ari.uni-heidelberg.de, spurzem@ari.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters) with embedded black holes is investigated. The interplay between velocity diffusion due to relaxation and black hole star accretion is followed together with cluster differential rotation using 2D+1 Fokker Planck numerical methods. The models can reproduce the Bahcall-Wolf fE1/4 (∝ r−7/4) cusp inside the zone of influence of the black hole. Angular momentum transport and star accretion processes support the development of central rotation in relaxation time scales, before re-expansion and cluster dissolution due to mass loss in the tidal field of a parent galaxy. Gravogyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to models without black hole.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bahcall, J. N. & Wolf, R. A., 1976, ApJ, 209, 214CrossRefGoogle Scholar
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H.-P. 2006, ApJ, 642, 21CrossRefGoogle Scholar
Fiestas, J. 2006, Ph.D. thesis Univ. of HeidelbergGoogle Scholar
Frank, J. & Rees, M. 1976, MNRAS, 176, 633CrossRefGoogle Scholar
Hachisu, I. 1979, PASJ, 31, 523Google Scholar
Hachisu, I. 1982, PASJ, 34, 313Google Scholar
Kim, E., Lee, H. M., & Spurzem, R. 2004, MNRAS, 351, 220CrossRefGoogle Scholar
Lightman, A. P. & Shapiro, S. L. 1977, ApJ, 211, 244CrossRefGoogle Scholar
Mackey, A. & van den Bergh, S. 2005, MNRAS, 360, 631CrossRefGoogle Scholar
Marchant, A. B. & Shapiro, S. L. 1980, ApJ, 239, 685CrossRefGoogle Scholar