Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T00:40:57.077Z Has data issue: false hasContentIssue false

Statistical Properties of the IntraCluster Light from SDSS Image Stacking

Published online by Cambridge University Press:  01 June 2007

Stefano Zibetti*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik – Postfach 1312 – D-85741Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of a diffuse stellar component in galaxy clusters has been established by a number of observational works in recent years. In this contribution I summarize our results (Zibetti et al. 2005) obtained by stacking SDSS images of 683 clusters, selected with the maxBCG algorithm at 0.2 < z < 0.3. Thanks to our large sample (≳30 times larger than any other sample of individually observed clusters so far) and the advantages of image stacking applied to SDSS images, we are able to measure the systematic properties of the intracluster light (ICL) with very high accuracy.

We find that the average surface brightness of the ICL ranges between 26 and 32 mag arcsec−2, and constantly declines from 70 kpc cluster-centric distance (i.e. distance from the BCG) to 700 kpc. Interestingly, the fraction of diffuse light over the total light (including galaxies), monotonically declines from ~ 50 to ≲ 5% over the same range of distances, thus showing that the ICL is more easily produced close to the bottom of a cluster's potential well. On the other hand, clusters lacking a bright BCG, hardly build up a large amount of intracluster stellar component. The link between the growth of the BCG and the ICL is also suggested by the strong degree of alignment between these two components which is observed in clusters where the BCG displays a significant elongation. With the additional fact that the colors of the ICL are consistent with those of galaxies, all this appears to be evidence for intracluster stars being stripped from galaxies that suffer very strong tidal interactions in the center of clusters and eventually merge into the BCG.

Our measurements also show that intracluster stars are a minor component of a cluster's baryonic budget, representing only ~ 10% of the total optical emission within 500 kpc.

Finally, we discuss some open issues that emerge from a comparison of the present results with other observations and recent theoretical modeling.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Arnaboldi, M., Freeman, K. C., Mendez, R. H., Capaccioli, M., Ciardullo, R., Ford, H., Gerhard, O., Hui, X., Jacoby, G. H., Kudritzki, R. P. & Quinn, P. J., 1996, ApJ, 472, 145CrossRefGoogle Scholar
Arnaboldi, M., Gerhard, O., Aguerri, J. A. L., Freeman, K. C., Napolitano, N. R., Okamura, S. & Yasuda, N., 2004, ApJ, 614, L33Google Scholar
Bernstein, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P. & Wittman, D., 1995, AJ, 110, 1507CrossRefGoogle Scholar
Conroy, C., Wechsler, R. H. & Kravtsov, A. V., 2007, astro-ph/0703374Google Scholar
Feldmeier, J. J., Ciardullo, R., Jacoby, G. H., Durrell, P. R. & Mihos, J. C., 2004, in IAU Symposium Intracluster Planetary Nebulae in Clusters and Groups, p 64Google Scholar
Feldmeier, J. J., Mihos, J. C., Morrison, H. L., Harding, P., Kaib, N. & Dubinski, J., 2004, ApJ, 609, 617Google Scholar
Feldmeier, J. J., Mihos, J. C., Morrison, H. L., Rodney, S. A. & Harding, P., 2002, ApJ, 575, 779CrossRefGoogle Scholar
Gerhard, O., Arnaboldi, M., Freeman, K. C., Okamura, S., Kashikawa, N. & Yasuda, N., 2007, A&A, 468, 815Google Scholar
Gonzalez, A. H., Zabludoff, A. I. & Zaritsky, D., 2005, ApJ, 618, 195Google Scholar
Gonzalez, A. H., Zabludoff, A. I., Zaritsky, D. & Dalcanton, J. J., 2000, ApJ, 536, 561Google Scholar
Gonzalez, A. H., Zaritsky, D. & Zabludoff, A. I., 2007, ArXiv 0705.1726Google Scholar
Hansen, S. M., McKay, T. A., Wechsler, R. H., Annis, J., Sheldon, E. S. & Kimball, A., 2005, ApJ, 633, 122Google Scholar
Koester, B. P., McKay, T. A., Annis, J., et al. , 2007a, ApJ, 660, 239Google Scholar
Koester, B. P., McKay, T. A., Annis, J., Wechsler, R. H., Evrard, A. E., Rozo, E., Bleem, L., Sheldon, E. S. & Johnston, D., 2007b, ApJ, 660, 221Google Scholar
Krick, J. E. & Bernstein, R. A., 2007, AJ, 134, 466Google Scholar
Melnick, J., Hoessel, J. & White, S. D. M., 1977, MNRAS, 180, 207CrossRefGoogle Scholar
Mihos, J. C., Harding, P., Feldmeier, J. & Morrison, H., 2005, ApJ, 631, L41Google Scholar
Monaco, P., Murante, G., Borgani, S. & Fontanot, F., 2006, ApJ, 652, L89Google Scholar
Murante, G., Giovalli, M., Gerhard, O., Arnaboldi, M. & Borgani, S., Dolag, K., 2007, MNRAS, 377, 2Google Scholar
Purcell, C. W., Bullock, J. S. & Zentner, A. R., 2007, astro-ph/0703004Google Scholar
Rudick, C. S., Mihos, J. C. & McBride, C., 2006, ApJ, 648, 936Google Scholar
Sommer-Larsen J., Romeo, A. D. & Portinari, L., 2005, MNRAS, 357, 478Google Scholar
Welch, G. A. & Sastry, G. N., 1971, ApJ, 169, L3Google Scholar
Zibetti, S., White, S. D. M., Schneider, D. P. & Brinkmann, J., 2005, MNRAS, 358, 949Google Scholar
Zwicky, F., 1951, PASP, 63, 61Google Scholar