Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T15:23:33.579Z Has data issue: false hasContentIssue false

The 3D morphology of the ejecta surrounding VY Canis Majoris

Published online by Cambridge University Press:  01 March 2007

Terry Jay Jones
Affiliation:
Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, USA email: tjj@astro.umn.edu, roberta@aps.umn.edu, ahelton@astro.umn.edu
Roberta M. Humphreys
Affiliation:
Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, USA email: tjj@astro.umn.edu, roberta@aps.umn.edu, ahelton@astro.umn.edu
L. Andrew Helton
Affiliation:
Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, USA email: tjj@astro.umn.edu, roberta@aps.umn.edu, ahelton@astro.umn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use second epoch images taken with WFPC2 on the HST and imaging polarimetry taken with the HST/ACS/HRC to explore the three dimensional structure of the circumstellar dust distribution around the red supergiant VY Canis Majoris. Transverse motions, combined with radial velocities, provide a picture of the kinematics of the ejecta, including the total space motions. The fractional polarization and photometric colors provide an independent method of locating the physical position of the dust along the line-of-sight. Most of the individual arc-like features and clumps seen in the intensity image are also features in the fractional polarization map, and must be distinct geometric objects. The location of these features in the ejecta of VY CMa using kinematics and polarimetry agree well with each other, and strongly suggest they are the result of relatively massive ejections, probably associated with magnetic fields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bowers, P. F., Johnston, K. J., & Spencer, J. H. 1983, ApJ, 274, 733CrossRefGoogle Scholar
Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., & Townes, C. H. 1994, AJ 107, 1469Google Scholar
de Jager, C. 1998, A&AR 8, 145Google Scholar
Herbig, G. H. 1972, ApJ, 172, 375Google Scholar
Hoffman, J. L., Whitney, B. A., Wood, K., & Nordsieck, K. H. 1997, Bulletin of the American Astronomical Society, 29, 1279Google Scholar
Humphreys, R. M., & Davidson, K. 1994, PASP 106, 1025Google Scholar
Humphreys, R. M., Helton, L. A., & Jones, T. J. 2007, AJ, in press.Google Scholar
Humphreys, R. M., Davidson, K., Ruch, G., & Wallerstein, G. 2005, AJ, 129, 492Google Scholar
Jones, T. J., Humphreys, R. M., Helton, L. A., Gui, C. & Xiang, H. 2007, AJ, in press.Google Scholar
Lada, C. J., & Reid, M. J. 1978, ApJ, 219, 95Google Scholar
Lowe, K. T. E., & Gledhill, T. M. 2007, MNRAS, 374, 176CrossRefGoogle Scholar
Marvel, K. 1997, PASP, 109, 1286Google Scholar
Morris, M., & Bowers, P. F. 1980, AJ, 85, 724Google Scholar
Richards, A. M. S., Yates, J. A., & Cohen, R. J. 1998, MNRAS, 299, 319Google Scholar
Schulte-Ladbeck, R. E., Pasquali, A., Clampin, M., Nota, A., Hillier, D. J., & Lupie, O. L. 1999, AJ, 118, 1320Google Scholar
Shure, M., Sellgren, K., Jones, T. J., & Klebe, D. 1995, AJ, 109, 721Google Scholar
Smith, N. 2004, MNRAS, 349, L31Google Scholar
Smith, N., Humphreys, R. M., Davidson, K., Gehrz, R. D., Schuster, M. T., & Krautter, J. 2001, AJ 121, 1111Google Scholar