Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T14:07:54.767Z Has data issue: false hasContentIssue false

Energy transfer in rotating turbulence

Published online by Cambridge University Press:  25 April 1997

CLAUDE CAMBON
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, UMR5509, École Centrale de Lyon, 69131 Ecully cedex, France
N. N. MANSOUR
Affiliation:
NASA-Ames Research Center, Moffett Field, CA 94035, USA
F. S. GODEFERD
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, UMR5509, École Centrale de Lyon, 69131 Ecully cedex, France

Abstract

The influence of rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime found in an RDT (rapid distortion theory) analysis, cannot affect a homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (direct numerical simulation) results are collected here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on turbulence.

The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping of the energy transfer due to rotation. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Roω=ω′/(2Ω) – ratio of r.m.s. vorticity and background vorticity – as the relevant rotation parameter, in accordance with DNS and EDQNM results.

In addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (RoL<1 and Roω>1), which is characterized by a macro-Rossby number RoL based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in the wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In addition, a polarization of the energy distribution in this slow two-dimensional manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral length-scales. Finally a generalized EDQNM (eddy damped quasi-normal Markovian) model is used to predict the underlying spectral transfer structure and all the subsequent developments of classic anisotropy indicators in physical space. The results from the model are compared to recent LES results and are shown to agree well. While the EDQNM2 model was developed to simulate ‘strong’ turbulence, it is shown that it has a strong formal analogy with recent weakly nonlinear approaches to wave turbulence.

Type
Research Article
Copyright
© 1997 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)