Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:06:27.601Z Has data issue: false hasContentIssue false

Following the gas flows from nuclear spirals to the accretion disk

Published online by Cambridge University Press:  01 August 2006

Thaisa Storchi-Bergmann*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil email: thaisa@ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A recent analysis of HST optical images of 34 nearby early-type active galaxies and of a matched sample of 34 inactive galaxies – both drawn from the Palomar survey – shows a clear excess of nuclear dusty structures (filaments, spirals and disks) in the active galaxies. This result supports the association of the dusty structures with the material which feeds the supermassive black hole (hereafter SMBH). Among the inactive galaxies there is instead an excess of nuclear stellar disks. As the active and inactive galaxies can be considered two phases of the “same” galaxy, the above findings and dust morphologies suggest an evolutionary scenario in which external material (gas and dust) is captured to the nuclear region where it settles and ends up feeding the active nucleus and replenishing the stellar disk – which is hidden by the dust in the active galaxies – with new stars. This evolutionary scenario is supported by recent gas kinematics of the inner few hundred parsecs of NGC 1097, which shows streaming motions (with velocities ∼50 km s−1) towards the nucleus along spiral arms. The implied large scale mass accretion rate is much larger than the one derived in previous studies for the nuclear accretion disk, but is just enough to accumulate one million solar masses over a few million years in the nuclear region, thus consistent with the recent finding of a young circumnuclear starburst of one million solar masses within 9 parsecs from the nucleus in this galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Fathi, K. et al. 2006, ApJ, 641, L25CrossRefGoogle Scholar
Ferrarese, L. et al. 2006, ApJ, 164, 334Google Scholar
Ho, L. C., Filippenko, A. V. & Sargent, W. L. W. 1995, ApJ, 98, 477Google Scholar
Knapen, J. H., Shlosman, I. & Peletier, R. F. 2000, ApJ, 529, 93CrossRefGoogle Scholar
Lauer, T. R. et al. 2005, AJ, 129, 2138CrossRefGoogle Scholar
Lopes, R. S., Storchi-Bergmann, T. & Saraiva, M. F. O. 2007, ApJ, in press [astro-ph/0610380]Google Scholar
Maciejewski, W. 2004, MNRAS, 354, 883CrossRefGoogle Scholar
Martini, P. & Pogge, R. W. 1999, AJ, 118, 2646CrossRefGoogle Scholar
Martini, P., Regan, M. W., Mulchaey, J. S. & Pogge, R. W. 2003, ApJ, 589, 774CrossRefGoogle Scholar
Mulchaey, J. S. & Regan, M. 1997, ApJ, 482, L135CrossRefGoogle Scholar
Nemmen, R. S. et al. 2006, ApJ, 643, 652CrossRefGoogle Scholar
Pogge, R. W. & Martini, P. 2002, ApJ, 569, 624CrossRefGoogle Scholar
Simkin, S. M., Su, H. J. & Schwarz, M. P. 1980, ApJ, 237, 404CrossRefGoogle Scholar
Storchi-Bergmann, T. et al. 2003, ApJ, 598, 956CrossRefGoogle Scholar
Storchi-Bergmann, T. et al. 2005, ApJ, 624, 13CrossRefGoogle Scholar
Tremaine, S. et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Van Dokkum, P. G. & Franx, M. 1995, AJ, 110, 2027CrossRefGoogle Scholar
Xilouris, E. M. & Papadakis, I. E. 2002, A&A, 387, 441Google Scholar