Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T22:31:57.079Z Has data issue: false hasContentIssue false

Uncertainties of the masses of black holes and Eddington ratios in AGN

Published online by Cambridge University Press:  01 August 2006

Suzy Collin*
Affiliation:
LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92140 Meudon, France email: suzy.collin@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Black hole masses in Active Galactic Nuclei have been determined in 35 objects through reverberation mapping of the emission line region. I mention some uncertainties of the method, such as the “scale factor” relating the Virial Product to the mass, which depends on the unknown structure and dynamics of the Broad Line Region.

When the black hole masses are estimated indirectly using the empirical size-luminosity relation deduced from this method, the uncertainties can be larger, especially when the relation is extrapolated to high and low masses and/or luminosities. In particular they lead to Eddington ratiosof the order of unity in samples of Narrow Line Seyfert 1. As the optical-UV luminosity is provided by the accretion disk, the accretion rates can be determined and are found to be much larger than the Eddington rates.

So, accretion must be performed at a super-critical rate through a slim disk, resulting in rapid growth of the black holes. The alternative is that the mass determination is wrong at this limit.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abramowicz, M. A., Czerny, B., Lasota, J.-P. & Szuszkiewicz, E. 1988, ApJ, 332, 646CrossRefGoogle Scholar
Barth, A. J., Greene, J. E. & Ho, L. C. 2005, ApJL, 619, L151CrossRefGoogle Scholar
Collin, S., Boisson, C., Mouchet, M., Dumont, A.-M., Coupé, S., Porquet, D. & Rokaki, E. 2002, A&A, 388, 771Google Scholar
Collin, S. & Kawaguchi, T. 2004, A&A, 426, 797Google Scholar
Collin, S., Kawaguchi, T., Peterson, B. M. & Vestergaard, M. 2006, A&A, 456, 75Google Scholar
Gierliński, M. & Done, C. 2004, MNRAS, 349, L7CrossRefGoogle Scholar
Hubeny, I., Blaes, O., Krolik, J. H. & Agol, E. 2001, ApJ, 559, 680CrossRefGoogle Scholar
Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T. & Giveon, U. 2000, ApJ, 533, 631CrossRefGoogle Scholar
Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M. & Jannuzi, B. T. 2005, ApJ, 629, 61CrossRefGoogle Scholar
Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M. & Wandel, A. 2004, ApJ, 615, 645CrossRefGoogle Scholar
Peterson, B. M. & Wandel, A. 1999, ApJL, 521, L95CrossRefGoogle Scholar
Peterson, B. M. & Wandel, A. 2000, ApJL, 540, L13CrossRefGoogle Scholar
Peterson, B. M. et al. 2004, ApJ, 613, 682CrossRefGoogle Scholar
Véron-Cetty, M.-P., Véron, P. & Gonçalves, A.C. 2001, A&A, 372, 730Google Scholar
Wang, T.-G., & Zhang, X.-G. 2003, MNRAS, 340, 793CrossRefGoogle Scholar