Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:12:19.548Z Has data issue: false hasContentIssue false

CNO and Li abundances in Barium-enriched stars

Published online by Cambridge University Press:  01 August 2006

Natalia A. Drake
Affiliation:
Observatório Nacional/MCT, Rua José Cristino, 77, Rio de Janeiro 20921-400, Brazil email: drake@on.br, claudio@on.br Sobolev Astronomical Institute, St. Petersburg State University, Universitetski pr. 28, St. Petersburg 198504, Russia.
Claudio B. Pereira
Affiliation:
Observatório Nacional/MCT, Rua José Cristino, 77, Rio de Janeiro 20921-400, Brazil email: drake@on.br, claudio@on.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CNO and Li abundances and 12C/13C isotopic ratios have been derived for two metal-poor Ba giants, HD 104340 and HD 206983, and two CH subgiants, HD 50264 and HD 87080. High resolution spectra obtained with the 1.52 m telescope and the FEROS echelle spectrograph at ESO, La Silla, Chile, were used in this study. CNO and Li abundances so as 12C/13C isotopic ratios were determined by applying the synthetic spectrum method to the lines of C2, CH, CN, [O I’ and Li I. Our analysis showed that the giant stars studied here have quite different natures: HD 206983 is a metal-poor barium star while HD 104340, although showing enhancement of s-process elements, should not be considered as a classical barium star: its barium syndrome can be explained by internal nucleosynthesis. The low metallicity giant HD 104340 can experience deeper convective mixing and, consequently, a larger dredge-up of CNO-cycle products compared to normal red giants. Light element abundance pattern of HD 104340 resembles anomalies resulting from the appearance on the stellar surface of material enriched in triple-α and CNO cycling.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Allen, D.M. & Barbuy, B. 2006, A&A 454, 895Google Scholar
Barbuy, B., Jorissen, A., Rossi, S.C.F., & Arnould, M. 1992, A&A 262, 216Google Scholar
Carretta, E., Gratton, R.G., & Sneden, C. 2000, A&A 356, 238Google Scholar
Drake, N.A. & Pereira, C.B. 2006, A&A (submitted)Google Scholar
Gopka, V., Yushchenko, A., Lambert, D., Drake, N., & Rosptopchin, S. 2006, in: Nuclei in the Cosmos-IX, Proc. of International Symp. on Nuclear Astrophysics, CERN, Switzerland (in press)Google Scholar
Jorissen, A., Zacs, L., Udry, S., Lindgren, H., & Musaev, F.A. 2005, A&A 441, 1135Google Scholar
Junqueira, S. & Pereira, C.B. 2001, AJ 122, 360CrossRefGoogle Scholar
Lambert, D.L., Smith, V.V. & Heath, J. 1993, PASP 105, 568CrossRefGoogle Scholar
Luck, R.E. & Bond, H.T. 1993, ApJS 77, 515CrossRefGoogle Scholar
McClure, R.D., Fletcher, L.M., & Nemec, J.M. 1980, ApJ (Letters) 338, L35CrossRefGoogle Scholar
Pereira, C.B. & Junqueira, S. 2003, A&A 402, 1061Google Scholar
Smith, V.V., Coleman, H., & Lambert, D.L. 1993, ApJ 417, 287CrossRefGoogle Scholar
Sneden, C. 1973, ApJ 184, 839CrossRefGoogle Scholar
Sneden, C., Pilachowski, C.A., & Lambert, D.L. 1981, PASP 95, 745CrossRefGoogle Scholar
Sneden, C. 1983, ApJ 184, 839CrossRefGoogle Scholar
Spite, M., Cayrel, R., Plez, B., Hill, V., & Spite, F., et al. 2005, A&A 430, 655Google Scholar
Vanture, A. 1992a, AJ 104, 1986CrossRefGoogle Scholar
Vanture, A. 1992b, AJ 104, 1997CrossRefGoogle Scholar