Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T15:07:14.528Z Has data issue: false hasContentIssue false

Micropatterning of Fe-based bulk metallic glass surfaces by pulsed electrochemical micromachining

Published online by Cambridge University Press:  31 October 2012

Ralph Sueptitz*
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Kristina Tschulik
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Christian Becker
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Mihai Stoica
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Margitta Uhlemann
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Jürgen Eckert
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
Annett Gebert
Affiliation:
Chemistry of Functional Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: r.sueptitz@ifw-dresden.de
Get access

Abstract

A new technique for micropatterning Fe-based bulk metallic glass surfaces is reported. The transpassive dissolution process is utilized for a defined localized material removal when using a pulsed electrochemical micromachining process. By applying submicrosecond pulses between a work piece and a tool electrode, microholes of high aspect ratio and depth of up to 100 μm can be machined into the bulk glassy Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy. Two potential electrolytes are identified for the machining process. For these electrolytes, different reaction mechanisms are discussed. The possibility of machining more complex structures is demonstrated for the most promising electrolyte, a methanolic H2SO4solution. The impact of the process parameters, pulse length and pulse voltage, on the machining gap and the surface quality of the machined structures is evaluated.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of materials research. MRS Bull. 32, 611 (2007).CrossRefGoogle Scholar
Inoue, A. and Nishiyama, N.: New bulk metallic glasses for applications as magnetic-sensing, chemical and structural material. MRS Bull. 32, 651 (2007).CrossRefGoogle Scholar
Kumar, G., Tang, H.X., and Schroers, J.: Nanomoulding with amorphous metals. Nature 457, 868 (2009).CrossRefGoogle ScholarPubMed
Henann, D.L., Srivastava, V., Taylor, H.K., Hale, M.R., Hardt, D.E., and Anand, L.: Metallic glasses: Viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing. J. Micromech. Microeng. 19, 115030 (2009).CrossRefGoogle Scholar
Roth, S., Stoica, M., Degmová, J., Gaitzsch, U., Eckert, J., and Schultz, L.: Fe-based bulk amorphous soft magnetic materials. J. Magn. Magn. Mater. 304, 192 (2006).CrossRefGoogle Scholar
Saotome, Y., Imai, K., Shioda, S., Shimizu, S., Zhang, T., and Inoue, A.: The micro-nanoformability of Pt-based metallic glass and the nano-forming of three-dimensional structures. Intermetallics 10, 1241 (2002).CrossRefGoogle Scholar
Kündig, A.A., Cucinelli, M., Uggowitzer, P.J., and Dommann, A.: Preparation of high aspect ratio surface microstructures out of a Zr-based bulk metallic glass. Microelectron. Eng. 67, 405 (2003).CrossRefGoogle Scholar
Schroers, J.: Processing of bulk metallic glass. Adv. Mater. 22, 1566 (2010).CrossRefGoogle ScholarPubMed
Nishiyama, N. and Inoue, A.: Glass transition behavior and viscous flow working of Pd40Cu30Ni10P20 amorphous alloy. Mater. Trans., JIM 40, 64 (1999).CrossRefGoogle Scholar
Schroers, J., Nguyen, T., O’Keeffe, S., and Desai, A.: Thermoplastic forming of bulk metallic glass – applications for MEMS and microstructure fabrication. Mater. Sci. Eng., A 449, 898 (2007).CrossRefGoogle Scholar
Chen, X.H., Zhang, X.C., Zhang, Y., and Chen, G.L.: Fabrication and characterization of metallic glasses with a specific microstructure for micro-electro-mechanical system applications. J. Non-Cryst. Solids 354, 3308 (2008).CrossRefGoogle Scholar
Landolt, D., Chauvy, P-F., and Zinger, O.: Electrochemical micromachining, polishing and surface structuring of metals: Fundamental aspects and new developments. Electrochim. Acta 48, 3185 (2003).CrossRefGoogle Scholar
Bhattacharyya, B., Munda, J., and Malapati, M.: Advancement in electrochemical micro-machining. Int. J. Mach. Tools Manuf 44, 1577 (2004).CrossRefGoogle Scholar
Schuster, R., Kirchner, V., Allongue, P., and Ertl, G.: Electrochemical micromachining. Science 289, 98 (2000).CrossRefGoogle ScholarPubMed
Cagnon, L., Kirchner, V., Kock, M., Schuster, R., Ertl, G., Gmelin, W.T., and Kück, H.: Electrochemical micromachining of stainless steel by ultrashort voltage pulses. Z. Phys. Chem. 217, 299 (2003).CrossRefGoogle Scholar
Maurer, J.J., Mallett, J.J., Hudson, J.L., Fick, S.E., Moffat, Th.P., and Shaw, G.A.: Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses. Electrochim. Acta 55, 952 (2010).CrossRefGoogle Scholar
Kock, M., Kirchner, V., and Schuster, R.: Electrochemical micromachining with ultrashort voltage pulses – a versatile method with lithographic precision. Electrochim. Acta 48, 3213 (2003).CrossRefGoogle Scholar
Sen, M. and Shan, H.S.: A review of electrochemical macro- and micro-hole drilling processes. Int. J. Mach. Tools Manuf 45, 137 (2005).CrossRefGoogle Scholar
Koza, J.A., Sueptitz, R., Uhlemann, M., Schultz, L., and Gebert, A.: Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique. Intermetallics 19, 444 (2011).CrossRefGoogle Scholar
Stoica, M., Degmová, J., Roth, S., Eckert, J., Grahl, H., Schultz, L., Yavari, A.R., Kvick, Å., and Heunen, G.: Magnetic properties and phase transformations of bulk amorphous Fe-Based alloys obtained by different techniques. Mater. Trans. 43, 1966 (2002).CrossRefGoogle Scholar
Stoica, M., Eckert, J., Roth, S., Zhang, F., Schultz, L., and Wang, W.H.: Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 13, 764 (2005).CrossRefGoogle Scholar
Stoica, M., Eckert, J., Roth, S., Yavari, A.R., and Schultz, L.: Fe65.5Cr4Mo4Ga4P12C5B5.5 BMGs: Sample preparation, thermal stability and mechanical properties. J. Alloys Compd. 434, 171 (2007).CrossRefGoogle Scholar
Ju, B-F., Chen, Y-L., and Ge, Y.: The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Rev. Sci. Instrum. 82, 013707 (2011).CrossRefGoogle ScholarPubMed
Sueptitz, R., Koza, J., Uhlemann, M., Gebert, M.A., and Schultz, L.: Magnetic field effect on the anodic behavior of a ferromagnetic electrode in acidic solutions. Electrochim. Acta 54, 2229 (2009).CrossRefGoogle Scholar
Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford, 1966).Google Scholar
Strehblow, H-H.: Nucleation and repassivation of corrosion pits for pitting on iron and nickel. Werkst. Korros. 27, 792 (1976).CrossRefGoogle Scholar
Löchel, B.P. and Strehblow, H-H.: On the mechanism of breakdown of passivity of iron for instationary conditions. Werkst. Korros. 31, 353 (1980).CrossRefGoogle Scholar
Jollie, D.M. and Harrison, P.G.: An in situ IR study of the thermal decomposition of trifluoroacetic acid. J. Chem. Soc., Perkin Trans 2 2, 1571 (1997).CrossRefGoogle Scholar
West, A.C. and Newman, J.: Current distributions on recessed electrodes. J. Electrochem. Soc. 138, 1620 (1991).CrossRefGoogle Scholar
Mazurkiewicz, B.: Anodic passivity of iron in sulphuric acid. Electrochim. Acta 38, 495 (1993).CrossRefGoogle Scholar
Piotrowski, O., Madore, C., and Landolt, D.: The mechanism of electropolishing of titanium in methanol-sulfuric acid electrolytes. J. Electrochem. Soc. 145, 2362 (1998).CrossRefGoogle Scholar
Piotrowski, O., Madore, C., and Landolt, D.: Electropolishing of tantalum in sulfuric acid–methanol electrolytes. Electrochim. Acta 44, 3389 (1999).CrossRefGoogle Scholar