Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T23:19:22.894Z Has data issue: false hasContentIssue false

Femtosecond Interfacial Electron Transfer Dynamics of CdSe Semiconductor Nanoparticles

Published online by Cambridge University Press:  09 August 2011

C. Burda
Affiliation:
Laser Dynamics Laboratory, Georgia Institute of Technology, Department of Chemistry, Atlanta, GA 30332-0400
T C. Green
Affiliation:
Laser Dynamics Laboratory, Georgia Institute of Technology, Department of Chemistry, Atlanta, GA 30332-0400
S. Link
Affiliation:
Laser Dynamics Laboratory, Georgia Institute of Technology, Department of Chemistry, Atlanta, GA 30332-0400
M. A. El-Sayed
Affiliation:
Laser Dynamics Laboratory, Georgia Institute of Technology, Department of Chemistry, Atlanta, GA 30332-0400
Get access

Abstract

The effect of the adsorption of an electron donor (thiophenol, TP) on the surface of CdSe nanoparticles (NPs) on the emission and electron-hole dynamics is studied. It is found that while the emission is completely quenched, the effect on the transient bleach recovery of the band gap absorption is only slight. This is explained by a mechanism in which the hole in the valence band of the NP is rapidly neutralized by electron transfer from the TP. However, the excited electron in the conduction band is not transferred to the TP cation, i. e. the electron does not shuttle via the organic moiety as it does when naphthoquinone is adsorbed [1]. The excited electron is rather trapped by surface states. Thus the rate of bleach recovery in the CdSe NP system is determined by the rate of electron trapping and not by hole trapping. Comparable conclusions resulted previously [2] for the CdS NP when the CdS-MV2+ system is studied. A comparative discussion of the electron-hole dynamics in these systems (CdSe-NQ, CdS-MV2+ and CdSe-TP) is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burda, C.; Green, T.C.; Link, S.; and El-Sayed, M. A. submitted to J Phys. Chem. A.Google Scholar
2. Logunov, S.; Green, T.; Marguet, S.; and El-Sayed, M. A.. Phys. Chem. A 1998, 102, 5652.Google Scholar
3. Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E.; J. Chem. Phys. 1988,89, 4001.Google Scholar
4. Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Caroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E.; Phys. Rev. Lett. 1990, 65, 1623.Google Scholar
5. Hunsche, S.; Dekorsy, T.; Klimov, V.; and Kurz., H. Appl. Phys. B 1996, 62, 3.Google Scholar
6. Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; and Bawendi, M. G. Phys. Rev. B 1996, 54, 4843.Google Scholar
7. Brus, L. E. J. Chem. Phys. 1984, 80, 4403.Google Scholar
8. Murray, C. B.; Norris, D. J.; and Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.Google Scholar
9. Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Caroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E.; Phys. Rev. Lett. 1990, 65, 1623.Google Scholar
10. Nirmal, M.; Murray, C. B.; and Bawendi, M. G. Phys. Rev. B 1994, 50, 2293.Google Scholar
11. Nirmal, M; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, Al. L.; and Rosen, M. Phys. Rev. Lett. 1995, 75, 3728.Google Scholar
12. Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; and Bawendi, M. G. Phys. Rev. B 1996, 54, 4843.Google Scholar