Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T13:03:08.326Z Has data issue: false hasContentIssue false

Matrix-Assisted Synthesis of Palladium Nanocage and Nanowires

Published online by Cambridge University Press:  17 March 2011

Kyung-Bok Lee
Affiliation:
Department of Chemistry and School of Molecular Science-BK21, Korea Advanced Institute of Science and Technology (KAIST), Taejon, 305-701, Korea
Hongkyu Kang
Affiliation:
Department of Chemistry and School of Molecular Science-BK21, Korea Advanced Institute of Science and Technology (KAIST), Taejon, 305-701, Korea
S. J. Oh
Affiliation:
Korea Basic Science Institute (KBSI), Taejon, 305-333, Korea
H.-C. Ri
Affiliation:
Korea Basic Science Institute (KBSI), Taejon, 305-333, Korea
Get access

Abstract

Our study describes the synthesis of novel nanoscale Pd cage and wires whose sizes and shapes are templated by mesoporous matrices. The templates used are cubic phase MCM-48 and hexagonal phase CnMCM-41 (n = 16, and 22), SBA-15, which have pore diameters of ∼3, ∼3.8, ∼4.7, and ∼9 nm, respectively. For Pd@MCM-48, the Pd metal forms spherical domains (∼38 nm) consisting of three dimensionally interconnected into Pd arrays; for Pd@SBA-15 and Pd@MCM-41, the Pd metal forms of one-dimensional wires. Etching out the matrix produces porous Pd cages (pore sizes of ∼1.5 - 2.0 nm) with retaining original domain sizes of ∼38 nm; similarly Pd@SBA-15 and Pd@MCM-41 afford freestanding Pd nanowires. All the materials are examined by TEM, XRD, BET, and EDAX analysis. Furthermore, the thermal behavior of Pd nanowire is briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alivisatos, A. P., Science, 271, 933 (1996).Google Scholar
2. a) Wu, C. and Bein, T., Science, 264, 1757 (1994). b) C. Wu and T. Bein, Science, 266, 1013 (1994). c) C. R. Martin, Chem. Mater., 8, 1739 (1996).Google Scholar
3. Ying, J. Y., Mehnert, C. D. and Wong, M. S., Angew. Chem., Int. Ed. Engl., 38, 56 (1999).Google Scholar
4. Johnson, S. A., Ollovier, P. J. and Mallouk, T. E., Science, 283, 963 (1999).Google Scholar
5. Ryoo, R., Joo, S. H. and Jun, S.,J. Phys. Chem. B, 103, 7743 (1999).Google Scholar
6. Attard, G. S., Bartlett, P. N., Coleman, R. B., Elliott, J. M., Owen, J. R. and Wang, J. H., Science, 278, 838 (1997).Google Scholar
7. a) Han, Y. J., Kim, J. and Stucky, G. D., Chem. Mater., 12, 2068 (2000). b) M. H. Huang, A. Choudrey and P. Yang, Chem. Commun. 1063 (2000). c) H. Kang, Y. Jun, J.-I. Park, K.-B. Lee, and J. Cheon, Chem. Mater., 12, 3530 (2000).Google Scholar
8. Velev, O. D., Tessier, P. M., Lenhoff, A. M. and Kaler, E. W., Nature, 401, 548 (1999).Google Scholar
9. McGraw-Hill Concise Encyclopedia of Science and Technology, ed. Parker, S. P. (McGraw- Hill: New York, 1989) pp.1343.Google Scholar
10. The cubic MCM-48 and hexagonal SBA-15 hosts were prepared by a literature method. See: Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., Science, 279, 548 (1998).Google Scholar
11. Pd(hfac)2 was synthesized following a literature method. See: Siedle, A. R., Newmark, R. A., Kruger, A. A., Pignolet, L. H., Inorg. Chem., 20, 3399 (1981).Google Scholar
12. Pd(hfac)2 is known to adsorb readily on silica surfaces by means of strong Lewis acid-base interactions between the Pd center and surface hydroxyl groups. See: Siedle, A. R. and Newmark, R. A., J. Am. Chem. Soc., 103, 1240 (1981).Google Scholar
13. Conners, L., Hollis, T., Johnson, D. A. and Blyholder, G., J. Phys. Chem. B, 102, 10112 (1998).Google Scholar