Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T05:11:29.582Z Has data issue: false hasContentIssue false

Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors

Published online by Cambridge University Press:  14 May 2009

E. F. C. Driessen
Affiliation:
Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
F. R. Braakman
Affiliation:
Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
E. M. Reiger
Affiliation:
Kavli Institute for Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CE Delft, The Netherlands
S. N. Dorenbos
Affiliation:
Kavli Institute for Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CE Delft, The Netherlands
V. Zwiller
Affiliation:
Kavli Institute for Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CE Delft, The Netherlands
M. J. A. de Dood*
Affiliation:
Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~5% at 488 nm to ~30% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~70% can be reached for a detector on Si or GaAs, without the need for an optical cavity.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

References

Gol'tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B.M., Dzardanov, A., Williams, C., Sobolewski, R.R., Appl. Phys. Lett. 79, 705 (2001) CrossRef
Gol'tsman, G.N., Minaeva, O., Korneev, A., Tarkhov, M., Rubtsova, I., Divochiy, A., Milostnaya, I., Chulkova, G., Kaurova, N., Voronov, B.M. et al., IEEE Trans. Appl. Supercond. 17, 246 (2007) CrossRef
Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y., Nat. Photon. 1, 343 (2007) CrossRef
Semenov, A., Engel, A., Il'in, K., Gol'tsman, G.N., Siegel, M., Hübers, H.-W., Eur. Phys. J. Appl. Phys. 21, 171 (2003) CrossRef
Kerman, A.J., Dauler, E.A., Keicher, W.E., Yang, J.K.W., Berggren, K.K., Gol'tsman, G.N., Voronov, B.M., Appl. Phys. Lett. 88, 111 (2006) CrossRef
Ejrnaes, M., Cristiano, R., Quaranta, O., Pagano, S., Gaggero, A., Mattioli, F., Leoni, R., Voronov, B., Gol'tsman, G.N., Appl. Phys. Lett. 91, 262509 (2007) CrossRef
Engel, A., Semenov, A., Hübers, H.-W., Il'in, K., Siegel, M., Physica C 444, 12 (2006) CrossRef
Bell, M., Kaurova, N., Divochiy, A., Gol'tsman, G.N., Bird, J., Sergeev, A., Verevkin, A.A., IEEE Trans. Appl. Supercond. 17, 267 (2007) CrossRef
Kornelsen, K.E., Dressel, M., Eldridge, J.E., Brett, M.J., Westra, K.L., Phys. Rev. B 44, 11882 (1991) CrossRef
Anant, V., Kerman, A.J., Dauler, E.A., Yang, J.K.W., Rosfjord, K.M., Berggren, K.K., Opt. Expr. 16, 10750 (2008) CrossRef
Dorenbos, S.N., Reiger, E., Akopian, N., Perinetti, U., Zwiller, V., Zijlstra, T., Klapwijk, T.M., Appl. Phys. Lett. 93, 161102 (2008) CrossRef
Rosfjord, K.M., Yang, J.K.W., Dauler, E.A., Kerman, A.J., Anant, V., Voronov, B.M., Gol'tsman, G.N., Berggren, K.K., Opt. Expr. 14, 527 (2006) CrossRef
Bird, G.R., Parrish, M., J. Opt. Soc. Am. 50, 886 (1960) CrossRef
Aspnes, D.E., Am. J. Phys. 50, 704 (1982) CrossRef
Pitarke, J.M., Garcia-Vidal, F.J., Phys. Rev. B 57, 15261 (1998) CrossRef
Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K., J. Opt. Soc. Am. A 12, 1068 (1995) CrossRef
E.D. Palik, Handbook of Optical Constants of Solids, Vol. III (Academic Press, 1998)
Tanabe, K., Asano, H., Katoh, Y., Michikami, O., J. Appl. Phys. 63, 1733 (1988) CrossRef
Lee, W.-J., Kim, J.-E., Park, H.Y., Park, S., Kim, M.-S., Kim, J.T., Ju, J.J., J. Appl. Phys. 103, 073713 (2008) CrossRef
S. Ramo, J.R. Whinnery, Fields and Waves in Modern Radio, 2nd edn. (John Wiley & Sons, 1953)
Verevkin, A., Pearlman, A., Slysz, W., Zhang, J., Currie, M., Korneev, A., Chulkova, G., Okunev, O., Kouminov, P., Smirnov, K. et al., J. Mod. Opt. 51, 1447 (2004) CrossRef
Jukna, A., Kitaygorsky, J., Pan, D., Cross, A.S., Pearlman, A.J., Komissarov, I., Okunev, O., Smirnov, K., Korneev, A., Chulkova, G. et al., Acta Phys. Pol. A 113, 955 (2008) CrossRef