Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T12:17:13.267Z Has data issue: false hasContentIssue false

Quasicrystalline coatings: Thermal evolution of structure and properties

Published online by Cambridge University Press:  31 January 2011

C. I. Lang
Affiliation:
Department of Materials Engineering, University of Cape Town, Private Bag, Rondebosch, 7700 South Africa
D. J. Sordelet
Affiliation:
Department of Materials Science and Engineering, Department of Mechanical Engineering, and Ames Laboratory, Iowa State University, Ames, Iowa 50011
M. F. Besser
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
D. Shechtman
Affiliation:
Department of Materials Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
F. S. Biancaniello
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
E. J. Gonzalez
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Quasicrystals (QCs) are known to exhibit unique properties as a result of their unique quasiperiodic structure. Real quasicrystalline (QC) materials, however, may exhibit complex phase structures, and as a consequence, their properties may differ from expectations. In the present work, QC coatings of the Al–Cu–Fe, Al–Cu–Fe–Cr, and Al–Pd–Mn systems were prepared by a plasma spray process, followed by heat treatments in the range 500–800 °C. The phase structure and evolution of the coatings were evaluated, and thermal diffusivity, hardness, and friction coefficient were measured. The presence of quasicrystalline and crystalline phases and their influence on these properties is systematically considered for the first time. Broadly, the coatings exhibit the properties expected of QC materials, low thermal diffusivity, high hardness, and low coefficients of friction, but it is also shown that these properties can be sensitive to the phase structure of the coatings. This suggests that phase structure may be manipulated by heat treatment to optimize the properties of QC coatings.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsai, A-P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).Google Scholar
2.Denoyer, F., Heger, G., Lambert, M., and Guyot, P., J. Phys. (Paris) 51, 651 (1990).Google Scholar
3.Zhang, Z., Li, N.C., and Urban, K., J. Mater. Res. 6, 366 (1991).Google Scholar
4.Gayle, F.W., Shapiro, A.J., Biancaniello, F.S., and Boettinger, W.J., Metall. Trans. A 23A, 2409 (1992).Google Scholar
5.Gratias, D., Calvayrac, Y., Devaud-Rzepski, J., Faudot, F., Harmelin, M., Quivy, A., and Bancel, P.A., J. Non-Cryst. Solids 153, 154, 482 (1993).Google Scholar
6.Dubois, J.M., Kang, S.S., Archambault, P., and Colleret, B., J. Mater. Res. 8, 38 (1993).Google Scholar
7.Dubois, J.M., Kang, S.S., and von Stebut, J., J. Mater. Sci. Lett. 10, 537 (1991).Google Scholar
8.Dubois, J.M., Kang, S.S., and Massiani, Y., J. Non-Cryst. Solids 153, 154, 443 (1993).Google Scholar
9.Kang, S.S., Dubois, J.M., and von Stebut, J., J. Mater. Res. 8, 2471 (1993).Google Scholar
10.Dubois, J.M., Kang, S.S., and Perrot, A., Mater. Sci. Eng. A 179/180, 122 (1994).Google Scholar
11.Sordelet, D.J., Besser, M.F., and Logsdon, J.L., Mater. Sci. Eng. A 255, 54 (1998).Google Scholar
12.Dong, C. and Dubois, J.M., J. Mater. Sci. 26, 1647 (1991).Google Scholar
13.Dong, C., Dubois, J.M., Kang, S.S., and Audier, M., Philos. Mag. B 65, 107 (1992).Google Scholar
14.Li, X.Z., Dong, C., and Dubois, J.M., J. Appl. Crystallogr. 28, 96 (1995).Google Scholar
15.Dubois, J.M., Phys. Scr. T 49, 93 (1993).Google Scholar
16.Kang, S.S., Malaman, B., Venturini, G., and Dubois, J.M., Acta Crystallogr. B 48, 770 (1992).CrossRefGoogle Scholar
17.Dubois, J.M., Proner, A., Bucaille, B., Cathonnet, Ph., Dong, C., Richard, V., Pianelli, A., Massiani, Y., Ait-Yaazza, S., and Belin-Ferre, E., Ann. Chim. 19, 3 (1994).Google Scholar
18.Beeli, C., Nissen, H-U., and Robadey, J., Philos. Mag. Lett. 63, 87 (1991).Google Scholar
19.Tsai, A.P., Inoue, A., Yokayama, Y., and Masumoto, T., Mater. Trans., JIM 31, 98 (1990).Google Scholar
20.Tsai, A.P., Inoue, A., Yokayama, Y., and Masumoto, T., Philos. Mag. Lett. 61, 9 (1990).Google Scholar
21.Tsai, A.P., Inoue, A., and Masumoto, T., Philos. Mag. Lett. 62, 95 (1990).Google Scholar
22.Wollgarten, M., Lakner, H., and Urban, K., J. Non-Cryst. Solids 153, 154, 108 (1993).Google Scholar
23.Boudard, M., de Boisseu, M., Janot, C., Dubois, J.M., and Dong, C., Philos. Mag. Lett. 64, 197 (1991).Google Scholar
24.Beeli, C. and Nissen, H.U., Fuhjahrstag. SPG 64, 906 (1991).Google Scholar
25.Krajci, M., Windisch, M., Hafner, J., Kresse, G., and Mihalkovic, M., Phys. Rev. B 51, 17355 (1995).Google Scholar
26.Yokayama, Y., Inoue, A., and Masumoto, T., Mater. Trans., JIM 34, 135 (1993).Google Scholar
27.Inoue, A., Yokayama, Y., and Masumoto, T., Mat. Sci. Eng. A 181/182, 850 (1994).Google Scholar
28.Chernikov, M.A., Bianchi, A., and Ott, H.R., Phys. Rev. B 51, 153 (1995).Google Scholar
29.Sordelet, D.J., Besser, M.F., and Anderson, I.E., J. Therm. Spray Technol. 5, 161 (1996).Google Scholar
30.Sordelet, D.J., Kramer, M.J., and Unal, O., J. Therm. Spray Technol. 4, 235 (1995).Google Scholar
31.Sun, W. and Hiraga, K., Mater. Sci. Eng. A 181/A182, 815 (1994).Google Scholar
32.Dong, C., Dubois, J.M., de Boisseau, M., Boudard, M., and Janot, C., J. Mater. Res. 6, 2637 (1991).Google Scholar
33.Goedecke, T. and Luck, R., Z. Metallkd. 86, 727 (1995).Google Scholar
34.Dian-Lin, Zhang, Shao-chun, Cai, Yun-ping, Wang, Li, Lu, Xue-mei, Wang, Ma, X.Z., and Luo, K.H., Phys. Rev. Lett. 66, 2778 (1991).Google Scholar
35.Sordelet, D.J., Kim, J.S., and Besser, M.F. (Mater. Res. Soc. Symp. Proc. 553, Warrendale, PA, 1999), p. 459.Google Scholar
36.Hiraga, K., Sun, W., Lincoln, F.J., Kaneko, M., and Matsuo, Y., Jpn. J. Appl. Phys. 1 30, 2028 (1991).Google Scholar
37.Koster, U., Liu, W., Liebertz, H., and Michel, M., J. Non-Cryst. Solids 153, 154, 446 (1993).Google Scholar
38.Dubois, J.M. and Pianelli, A., U.S. Patent No. 5 432 011 (1995).Google Scholar
39.Dubois, J-M., Ducos, M., and Nury, R., U.S. Patent No. 5 424 127 (1995).Google Scholar
40.Kang, S.S. and Dubois, J.M., Philos. Mag. A 66, 151 (1992).Google Scholar
41.Dubois, J-M., European Patent No. EP 0572646B1 (13 March 1996).Google Scholar