Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T11:54:46.355Z Has data issue: false hasContentIssue false

Thermodynamic description of the Cu–Sn system

Published online by Cambridge University Press:  31 January 2011

Wojcieh Gierlotka
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan; and Non-Ferrous Metals Department, Akademia Górniczo-Hutnicza (AGH) University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
Sinn-wen Chen*
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan
Shih-kang Lin
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan
*
a)Address all correspondence to this author. e-mail: swchen@che.nthu.edu.tw
Get access

Abstract

The Cu–Sn binary system is important for various applications, especially for recent developments in the electronics packaging industry. The ϵ-Cu3Sn and η-Cu6Sn5 (η′ phases) phases are frequently encountered in electronics products. However, the two phases have been described as line compounds in previous thermodynamic modeling, and their compositional homogeneities were not considered. In this study, the thermodynamic properties of the Cu–Sn binary system are modeled and the phase diagram is calculated by the CALPHAD method, using experimental information reported in the literature. The ϵ and η (η′) phases are described using compound energy models with two and three sublattices, respectively, so that their compositional homogeneities could be calculated. Good agreement was observed between the calculated result and the existing experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takemoto, J., Matsunawa, A.Takahashi, M.: Tensile test for estimation of thermal fatigue properties of solder alloys. J. Mater. Sci. 32(15), 4077 1997CrossRefGoogle Scholar
2Lee, C.B., Jung, S.B., Shina, Y.E.Shur, C.C.: The effect of Bi concentration on wettability of Cu substrate by Sn–Bi solders. Mater. Trans. 42, 751 2001CrossRefGoogle Scholar
3Yang, W.Meddler, R.W.: Microstructure evolution of eutectic Sn–Ag solder joints. J. Electron. Mater. 23, 765 1994CrossRefGoogle Scholar
4Takatu, Y., Liu, X., Ohnuma, I., Kainuma, R.Ishida, K.: Interfacial reaction and morphology between molten Sn base solders and Cu substrate. Mater. Trans. 45(3), 646 2004CrossRefGoogle Scholar
5Lin, C-H., Chen, S-W.Wang, C-H.: Phase equilibria and solidification properties of Sn-Cu-Ni alloys. J. Electron. Mater. 32(9), 907 2002CrossRefGoogle Scholar
6Liu, X.J., Liu, H.S., Ohnuma, I., Kainuma, R., Ishida, K., Itabashi, S., Kameda, K.Yamaguchi, K.: Experimental determination and thermodynamic calculation of the phase equilibria in the Cu–In–Sn system. J. Electron. Mater. 30, 1093 2001CrossRefGoogle Scholar
7Morris, J.W., Goldstein, J.L.F.Mei, Z.: Microstructure and mechanical properties of Sn–In and Sn–Bi solders. JOM 45(7), 25 1993CrossRefGoogle Scholar
8Koster, W., Godecke, T.Heine, D.: The constitution of the copper–indium–tin system in the range from 100 to 50 at.% Cu. Z. Metallkd. 63, 820 1972Google Scholar
9Enoki, H., Ishida, K.Nishizawa, T.: Phase equilibria in cobalt-rich portions of the Co–Si and Co–Ge systems. J. Less-Common Met. 160, 153 1990CrossRefGoogle Scholar
10Chiu, C-N., Huang, Y-C., Zi, A-R.Chen, S-W.: Isoplethal sections of the liquidus projection and the 250 °C phase equilibria of the Sn–Ag–Cu–Ni quaternary system at the Sn-rich corner. Mater. Trans. 46, 2426 2005CrossRefGoogle Scholar
11Saunders, N.Miodownik, P.: Calphad, Calculation of Phase Diagrams a Comprehensive Guide Elsevier Science Oxford, UK 1998Google Scholar
12Okamoto, H.Massalski, T.B.: Guidelines for binary phase diagrams assessment. J. Phase Eq. 14, 316 1993CrossRefGoogle Scholar
13Shim, J-H., Oh, C-S., Lee, B-J.Lee, D.N.: Thermodynamic assessment of the Cu–Sn system. Z. Metallkd. 87, 205 1996Google Scholar
14Liu, X.J., Wang, C.P., Ohnuma, I., Kainuma, R.Ishida, K.: Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu–Sn and Cu–Sn–Mn systems. Metall. Mater. Trans. A 35(6), 1641 2004CrossRefGoogle Scholar
15The S.G.T.E. Substance Database, version 1997, SGTE Group (Grenoble, France, 1997),Google Scholar
16Dinsdale, A.: SGTE data for pure elements. Calphad 15, 317 1991CrossRefGoogle Scholar
17PURE 4.4 SGTE Pure Elements (Unary) Database (Scientific Group Thermodata Europe, 1991–2006),Google Scholar
18Saunders, N.Miodownik, A.P.: The Cu–Sn (copper–tin) system. Bull. Alloy Phase Diagrams 11, 278 1990CrossRefGoogle Scholar
19Gangulee, A., Das, G.C.Bever, M.B.: An x-ray. diffraction and calorimetric investigation of the compound Cu6Sn5. Metall. Trans. 4, 2063 1973CrossRefGoogle Scholar
20Liu, H.S., Wang, J.Jin, Z.P.: Thermodynamic optimization of the Ni–Sn binary system. Calphad 28, 363 2004CrossRefGoogle Scholar
21Ghosh, G.: Thermodynamic modeling of the nickel–lead–tin system. Metall. Mat. Trans. A 30, 1481 1999CrossRefGoogle Scholar
22Hamasumi, M.Takamoto, N.: A further research on the Cu–Sn system. Nippon Kinzoku Gakkaishi 1, 251 1937Google Scholar
23Hamasumi, M.: On the equilibrium diagram of Cu–Sn system. Nippon Kinzoku Gakkaishi 2, 147 1938Google Scholar
24Heycock, C.T.Neville, F.H.: Complete freezing-point curves of binary alloys containing silver or copper together with another metal. Philos. Trans. R. Soc. London, Ser. A 189, 25 1897Google Scholar
25Bauer, O.Vollenbruck, O.: Thermal analysis of the Cu–Sn binary system. Z. Metallkd. 15, 119 1923Google Scholar
26Stockdale, D.: The alpha-phase boundary in the copper–tin system. J. Inst. Met. 34, 111 1925Google Scholar
27Raper, A.R.: The equilibrium diagram of copper-tin alloys containing from 10 to 25 atomic percent of tin. J. Inst. Met. 38, 217 1927Google Scholar
28Vero, J.: Aufbau der Zinnbronzen (in German). Z. Anorg. Chem. 218, 402 1934CrossRefGoogle Scholar
29Haase, C.Pawlek, F.: Copper–tin alloys. Z. Metallkd. 28, 73 1936Google Scholar
30Bastow, B.D.Kirkwood, D.H.: Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis. J. Inst. Met. 99, 277 1971Google Scholar
31Hansen, M.Anderko, K.: Constitution of Binary Alloys McGraw-Hill New York 1958CrossRefGoogle Scholar
32Larsson, A-K., Stenberg, L.Lidin, S.: The superstructure of domain-twinned η′-Cu6Sn5. Acta Crystallogr., Sect. B 50, 636 1994CrossRefGoogle Scholar
33Kleppa, O.J.: A Calorimetric investigation of some binary and ternary liquid alloys rich in tin. J. Phys. Chem. 60, 842, 852–858 1956CrossRefGoogle Scholar
34Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M.Kelly, K.: Selected Values of the Thermodynamic Properties of Binary Alloys American Society for Metals Metals Park, OH 1973Google Scholar
35Takeuci, S., Uemura, O.Ikeda, S.: On the heat of mixing of liquid copper alloys. Sci. Rep. Tohoku Imp. Univ. A, 25, 4155 1974Google Scholar
36Yazawa, A.Itagaki, K.: Heats of mixing in liquid copper or gold binary alloys. Trans., JIM 16, 679 1975Google Scholar
37Iguchi, Y., Shimoji, H., Ban-Ya, S.Fuwa, T.: Calorimetric Study of heat of mixing of Cu alloys at 1120 °C. Tetsu-to-Hagane 63, 349 1977Google Scholar
38Pool, M.J., Predel, B.Schultheiss, E.: Application of the SETARAM high temperature calorimeter for determination of mixing enthalpies of liquid alloys. Thermochim. Acta 28, 349 1979CrossRefGoogle Scholar
39Lee, J.J., Kim, B.J.Min, W.S.: Calorimetric investigation of liquid Cu–Sb, Cu–Sn and Cu–Sn–Sb alloys. J. Alloys Compd. 202, 237 1993CrossRefGoogle Scholar
40Alcock, C.B., Sridhar, R.Svedberg, R.C.: A mass spectrometric study of the binary liquid alloys, Ag–In and Cu–Sn. Acta Metall. 17, 839 1969CrossRefGoogle Scholar
41Hager, J.P., Howard, S.M.Jones, J.H.: Thermodynamic properties of the Cu–Sn and Cu–Au systems by mass spectrometry. Metall. Trans. 1, 415 1970CrossRefGoogle Scholar
42Ono, K., Nishi, S.Oishi, T.: A thermodynamic study of liquid Cu–Sn and Cu–Cr alloys by the Knudsen cell–mass filter combination. Trans., JIM 25, 810 1984CrossRefGoogle Scholar
43Oshi, T., Hiruma, T.Moriyama, J.: Thermodynamic studies of molten Cu–Sn alloys using zirconia solid electrolyte. J. Japan Inst. Met. 36, 481 1972CrossRefGoogle Scholar
44Sengupta, A.K., Jagganathan, K.P.Ghosh, A.: Thermodynamic measurements in liquid Cu–Sn alloys. Metall Trans. B 9, 141 1978CrossRefGoogle Scholar
45Alcock, C.B.Jacob, K.T.: Solute–solute and solvent–solute interactions in α-solid solutions of u + Sn, Au + Sn, and Cu–Au–Sn Alloys. Acta Metall. 22, 539 1974CrossRefGoogle Scholar
46Sommer, F., Balbach, W.Predel, B.: Thermodynamic investigation of Cu–Sn alloys with solid state galvanic cells. Thermochim. Acta 33, 119 1979CrossRefGoogle Scholar
47Predel, B.Schallner, U.: Thermodynamic investigation of the Cu–Ga, Cu–In, Cu–Ge and Cu–Sn Systems. Mater. Sci. Eng. 10, 249 1972CrossRefGoogle Scholar
48ThermoCalc v. Q.Foundation Computational Thermodynamic Stockholm, Sweden 2000Google Scholar
49 S-W. Chen, unpublished workGoogle Scholar