Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:51:34.470Z Has data issue: false hasContentIssue false

Comparing Ion Distributions around RNA and DNA Helical and Loop-loop Motifs

Published online by Cambridge University Press:  01 February 2011

Andrey V Semichaevsky
Affiliation:
avsemych@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Ashley E Marlowe
Affiliation:
aemarlow@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Yaroslava G Yingling
Affiliation:
yara_yingling@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Get access

Abstract

Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this paper we use explicit molecular dynamics simulations to examine the variations in cationic distributions around DNA and RNA helices and loop-loop interactions with identical sequence except for Thymine to Uracil substitution. Our simulations show that the ionic distributions are different around RNA and DNA motifs which could be related to the discrepancy in stability of loop-loop complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, S. J. (2008) RNA folding: Conformational statistics, folding kinetics, and ion electrostatics. Annual Review of Biophysics. 37, 197214 Google Scholar
2. Klement, R., Soumpasis, D. M. and Jovin, T. M. (1991) Computation of Ionic Distributions around Charged Biomolecular Structures - Results for Right-Handed and Left-Handed DNA. Proceedings of the National Academy of Sciences of the United States of America. 88, 46314635 Google Scholar
3. Draper, D. E., Grilley, D. and Soto, A. M. (2005) Ions and RNA folding. Annual Review of Biophysics and Biomolecular Structure. 34, 221243 Google Scholar
4. Soto, A. M., Misra, V. and Draper, D. E. (2007) Tertiary structure of an RNA pseudoknot is stabilized by “diffuse” Mg2+ ions. Biochemistry. 46, 29732983 Google Scholar
5. Green, S. J., Lubrich, D. and Turberfield, A. J. (2006) DNA hairpins: fuel for autonomous DNA devices. Biophysical journal. 91, 29662975 Google Scholar
6. Horiya, S., Li, X., Kawai, G., Saito, R., Katoh, A., Kobayashi, K. and Harada, K. (2002) RNA LEGO: magnesium-dependent assembly of RNA building blocks through loop-loop interactions. Nucleic acids research, 4142 Google Scholar
7. Yingling, Y. G. and Shapiro, B. A. (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano letters. 7, 23282334 Google Scholar
8. Hansma, H. G., Oroudjev, E., Baudrey, S. and Jaeger, L. (2003) TectoRNA and ‘kissing-loop’ RNA: atomic force microscopy of self-assembling RNA structures. Journal of Microscopy-Oxford. 212, 273279 Google Scholar
9. Jaeger, L. and Chworos, A. (2006) The architectonics of programmable RNA and DNA nanostructures. Current Opinion in Structural Biology. 16, 531543 Google Scholar
10. Mayer, G., Ackermann, D., Kuhn, N. and Famulok, M. (2008) Construction of DNA architectures with RNA hairpins. Angewandte Chemie (International ed. 47, 971973 Google Scholar
11. Acharya, S., Barman, J., Cheruku, P., Chatterjee, S., Acharya, P., Isaksson, J. and Chattopadhyaya, J. (2004) Significant pKa perturbation of nucleobases is an intrinsic property of the sequence context in DNA and RNA. Journal of the American Chemical Society. 126, 86748681 Google Scholar
12. Mucha, A. K., B.; Jezowska-Bojczuk, M.;. (2006) Chem. Eur. J. 14, 6663 Google Scholar
13. Ippolito, J. A. and Steitz, T. A. (1998) A 1.3-angstrom resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proceedings of the National Academy of Sciences of the United States of America. 95, 98199824 Google Scholar
14. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. and Dumas, P. (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nature structural biology. 8, 10641068 Google Scholar
15. Barbault, F., Huynh-Dinh, T., Paoletti, J. and Lanceloti, G. (2002) A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. Journal of biomolecular structure & dynamics. 19, 649658 Google Scholar
16. Case, D. A., Cheatham, T. E. 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M. Jr., Onufriev, A., Simmerling, C., Wang, B. and Woods, R. J. (2005) The Amber biomolecular simulation programs. Journal of computational chemistry. 26, 16681688 Google Scholar
17. Wang, J. C., P.; Kollman, P.A.. (2000) J. Comput. Chem. 21, 1049 Google Scholar
18. Bansal, M., Bhattacharyya, D. and Ravi, B. (1995) Nuparm and Nucgen - Software for Analysis and Generation of Sequence-Dependent Nucleic-Acid Structures. Computer Applications in the Biosciences. 11, 281287 Google Scholar
19. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A. and Cheatham, T. E., 3rd. (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of chemical research. 33, 889897 Google Scholar
20. Ponomarev, S. Y., Thayer, K. M. and Beveridge, D. L. (2004) Ion motions in molecular dynamics simulations on DNA. Proceedings of the National Academy of Sciences of the United States of America. 101, 1477114775 Google Scholar