Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T19:10:45.469Z Has data issue: false hasContentIssue false

EFFECT OF SOWING DENSITY AND SEEDBED TYPE ON YIELD AND YIELD COMPONENTS IN BAMBARA GROUNDNUT (VIGNA SUBTERRANEA) IN WOODLAND SAVANNAS OF COTE D'IVOIRE

Published online by Cambridge University Press:  01 October 2009

N'. J. KOUASSI
Affiliation:
University of Abobo-Adjamé, Department of Natural Sciences, Laboratory of Genetics, 02 PB 801 Abidjan 02, Côte d'Ivoire
I. A. ZORO BI*
Affiliation:
University of Abobo-Adjamé, Department of Natural Sciences, Laboratory of Genetics, 02 PB 801 Abidjan 02, Côte d'Ivoire
*
Corresponding author. E-mails: banhiakalou@yahoo.fr and zorobi@uabobo.ci

Summary

Bambara groundnut (Vigna subterranea) is one of the most promising food legumes in Africa, due to its agronomic and nutritional potential. To take advantage of these attributes, several research programmes gathering agronomic and genetic data are being implemented throughout Africa. In this context, the response of yield and yield components to sowing density and seedbed type were tested in a three-year (2005, 2006 and 2007) field experiment using a bambara groundnut landrace with a semi-bunch growth habit. Three plant population densities: 13 900 plants ha−1, 62 500 plants ha−1 and 250 000 plants ha−1 were coupled with two seedbed types – raised and flat. A factorial trial using a split-plot design with three replicates was set up to analyse seed yield and plant biomass, as well as nine yield components. Sowing density influenced significantly (p < 0.05) seed yield (direct relationship) and most of the yield components (inverse relationship). The highest seed yields were observed on high-density plots (4.11 ± 1.05 ha−1). In contrast, seedbed type and year of experiment did not influence significantly the marketable yield and plant biomass (p > 0.05). This result has been attributed to the suitability of the amount and distribution of rainfall and temperature for the production of bambara groundnut at the target site. Based on the trend of yield response, cultivation of landraces of bambara groundnut characterized by a semi-bunch growth habit at high density on flat seedbeds was suggested in woodland savannas of Côte d'Ivoire to enhance seeds yield and reduce labour.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adjetey, J. A. and Ayihi, S. K. (1999). A study on water requirements of bambara groundnut (Vigna subterranea L. Verdc) grown in the Accra Plains. Journal of the Ghana Science Association 2: 6973.Google Scholar
Ameyaw, M. V. and Doku, E. V. (1983). Effects of soil moisture stress on the reproductive efficiency and yield of bambara groundnut (Vondzeia subterranea). Tropical Grain Legume Bulletin 28: 2329.Google Scholar
Awadhwal, N. K. and Thierstein, G. E. (1985). Soil crust and its impact on crop establishment: a review. Soil and Tillage Research 5: 289302.CrossRefGoogle Scholar
Azam-Ali, S. N., Sesay, A., Karikari, S. K., Massawe, F. J., Aguilar-Manjarrez, J., Bannayan, M. and Hampson, K. J. (2001). Assessing the potential of an underulized crop: a case study using bambara groundnut. Experimental Agriculture 37: 433472.CrossRefGoogle Scholar
Bahr, A. A. (2007). Effect of plant density and urea foliar application on yield and yield components of chickpea (Cicer arietinum). Research Journal of Agriculture and Biological Sciences 3: 220223.Google Scholar
Bresson, L. M. (1995). A review of physical management for crusting control in Australian cropping systems: research opportunities. Australian Journal of Soil Research 33: 195209.CrossRefGoogle Scholar
Brink, M. (1999). Development, growth and dry matter partitioning in bambara groundnut (Vigna subterranea) as influenced by photoperiod and shading. Journal of Agricultural Science 133: 159166.CrossRefGoogle Scholar
Chandrasekaran, R., Somasundaram, E., Amanullah, M. M., Thirukumaran, K. and Sathyamoorthi, K. (2007). Influence of varieties and plant spacing on the growth and yield of confectionery groundnut (Arachis hypogaea L.). Research Journal of Agriculture and Biological Sciences 3: 525528.Google Scholar
Collinson, S. T., Clawson, E. J., Azam-Ali, S. N. and Black, C. R. (1997). Effect of soil moisture deficits on the water relations of bambara groundnut (Vigna subterranea L. Verdc.). Journal of Experimental Botany 48: 877884.CrossRefGoogle Scholar
Collinson, S. T., Sibuga, K. P., Tarimo, A. J. P. and Azam-Ali, S. N. (2000). Influence of sowing date on the growth and yield of bambara groundnut landraces in Tanzania. Experimental Agriculture 36: 113.CrossRefGoogle Scholar
Cornelissen, R. L. E. J. (2005). Modelling variation in the physiology of bambara groundnut (Vigna subterranea (L.) Verdc.). PhD thesis. Cranfield University at Silsoe, UK.Google Scholar
Djè, Y., Bonny, B. S. and Zoro Bi, I. A. (2005). Observations préliminaires de la variabilité entre quelques morphotypes de voandzou (Vigna subterranea L. Verdc., Fabaceae) de Côte d'Ivoire. Biotechnology, Agronomy, Society and Environment 9: 249259.Google Scholar
Doku, E. V. (1968). Flowering, pollination and pod formation in bambara groundnut (Voandzeia subterranea) in Ghana. Experimental Agriculture 4: 4148.CrossRefGoogle Scholar
Duke, J. A., Okigbo, B. N., Reed, C. F. and Weder, J. K. P. (1977). Voandzeia subterranea (L.) Thouars. Tropical Grain Legume Bulletin 10: 811.Google Scholar
Dunbar, A. R. (1969). Bambara groundnut (Voandzeia subterranea). In The Annual Crops of Uganda, Nairobi: East African Literature Bureau.Google Scholar
Echarte, L., Luque, S., Andrate, F. H., Sadras, V. O., Cirilo, A., Otegui, M. E. and Vega, C. R. C. (2000). Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1963. Field Crops Research 68: 18.CrossRefGoogle Scholar
Elia, F. M. and Mwandemele, O. D. (1986). The effect of water deficit droughts on some plant characters in bambara groundnut (Vigna subterranea Thouars). Tropical Grain Legume Bulletin 33: 4550.Google Scholar
FAO (1996). Report on the State of the World's Plant Genetic Resources for Food and Agriculture Prepared for the International Technical Conference on Plant Genetic Resources Leipzig, Germany 17–23 June 1996. Food and Agriculture Organization.Google Scholar
Heller, J., Begemann, F. and Mushonga, J. (Eds) (1997). Bambara Groundnut (Vigna subterranea (L.) Verdc.). Promoting the Conservation and the Use of Underutilized and Neglected Crops: 9. Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna subterranea (L.) Verdc.). Rome: IPGRI.Google Scholar
Idris, A. L. Y. (2008). Effect of seed size and plant spacing on yield and yield components of faba bean (Vicia faba L.). Research Journal of Agriculture and Biological Sciences 4: 146148.Google Scholar
IPGRI, IITA, BAMNET. 2000. Descriptors for Bambara Groundnut (Vigna subterranea). International Plant Genetic Resources Institute, Rome, Italy; International Institute of Tropical Agriculture, Ibadan, Nigeria; The International Bambara Groundnut Network, Germany.Google Scholar
Jollife, P. A. and Gaye, M.-M. (1995). Dynamics of growth and yield component responses of bell peppers (Capsicum annuum L.) to row covers and population density. Scienta Horticulturae 62: 153164.CrossRefGoogle Scholar
Karikari, S. H., Chaba, O. and Molosiwa, B. (1999). Effects of intercropping bambara groundnut on pearl millet, sorghum and maize in Botswana African Crop Science Journal 7: 143152.Google Scholar
Karikari, S. K. and Tabona, T. T. (2004). Constitutive traits and selective indices of bambara groundnut (Vigna subterranea (L) Verdc) landraces for drought tolerance under Botswana conditions. Physics and Chemistry of the Earth 29: 10291034.CrossRefGoogle Scholar
Massawe, F. J., Azam-Ali, S. N. and Roberts, J. A. (2003). The impact of temperature on leaf appearance in bambara groundnut landraces. Crop Science 43: 13751379.CrossRefGoogle Scholar
Massawe, F. J., Mwale, S. S., Azam-Ali, S. N. and Roberts, J. A. (2005). Breeding in bambara groundnut (Vigna subterranea (L.) Verdc.): strategic considerations. African Journal of Biotechnology 4: 463471.Google Scholar
Minka, S. R. and Bruneteau, M. (2000). Partial chemical composition of bambara pea (Vigna subterranea [L.] Verdc). Food Chemistry 68: 273276.CrossRefGoogle Scholar
Mkandawire, F. L. (2007). Review of bamabara groundnut (Vigna subterranea [L.] Verdc.) production in sub-Sahara Africa. Agricultural Journal 2: 464470.Google Scholar
Mkandawire, F. L. and Sibuga, K. P. (2002). Yield response of bambara groundnut to plant population and seedbed type. African Crop Science Journal 10: 3949.CrossRefGoogle Scholar
Mpotokwane, S. M., Gaditlhatlhelwe, E., Sebaka, A. and Jideani, V. A. (2008). Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering 89: 9398.CrossRefGoogle Scholar
Mwale, S. S., Azam-Ali, S. N. and Massawe, F. J. (2007). Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture: 1. Dry matter and yield. European Journal of Agronomy 26: 345353.CrossRefGoogle Scholar
Neumann, A., Schmidtke, K. and Rauber, R. (2007). Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Research 100: 285293.CrossRefGoogle Scholar
Obagwu, J. (2003). Control of brown blotch of bambara groundnut with garlic extract and benomyl Phytoparasitica 31: 207209.CrossRefGoogle Scholar
Ofori, I. (1996). Correlation and path-coefficient analysis of components of seed yield in bambara groundnut (Vigna subterranea). Euphytica 91: 103107.CrossRefGoogle Scholar
Oliveira, J. S. (1976). Grain legume of Mozambique. Tropical Grain Legume Bulletin 3: 1315.Google Scholar
Ouedraogo, M., Ouedraogo, J. T., Tignere, J. B., Bilma, D., Dabire, C. B. and Konate, G. (2008). Characterization and evaluation of accessions of bambara groundnut (Vigna subterranea [L.] Verdcourt) from Burkina Faso. Science and Nature 5: 191197.CrossRefGoogle Scholar
SAS (2004). SAS for Windows. Cary (NC, USA): SAS Institute Inc.Google Scholar
Sesay, A. (2009). Influence of flooding on bambara groundnut (Vigna subterranea L.) germination: effect of temperature, duration and timing. African Journal of Agricultural Research 4: 100106.Google Scholar
Sesay, A., Magagula, C. N. and Mansuetus, A. B. (2008). Influence of sowing date and environmental factors on the development and yield of bambara groundnut (Vigna subterranea) landraces in a sub-tropical region. Experimental Agriculture 4: 167183.CrossRefGoogle Scholar
Thottappilly, G. and Rossel, H. W. (1997). Identification and characterization of viruses infecting bambara groundnut (Vigna subterranea) in Nigeria. International Journal of Pest Management 43: 177185.CrossRefGoogle Scholar
Turk, M. A., Tawaha, A. M. and El-Shatnawi, M. K. J. (2003). Response of lentil (Lens culinaris Medik) to plant density, sowing date, phosphorus fertilization and ethephon application in the absence of moisture stress. Journal of Agronomy and Crop Science 189: 16.CrossRefGoogle Scholar
Valenciano, J. B., Casquero, P. A., Boto, J. A. and Guerra, M. (2006). Effect of sowing techniques and seed pesticide application on dry bean yield and harvest components. Field Crops Research 96: 212.CrossRefGoogle Scholar