Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T09:18:57.388Z Has data issue: false hasContentIssue false

MEG recording from the human ventro-occipital cortex in response to isoluminant color stimulation

Published online by Cambridge University Press:  02 August 2005

ICHIRO KURIKI
Affiliation:
Human and Information Science Laboratory, NTT Communication Science Laboratories, Kanagawa, Japan
KENJI SADAMOTO
Affiliation:
Department of Mathematical Engineering and Information Physics, the University of Tokyo, Tokyo, Japan
TSUNEHIRO TAKEDA
Affiliation:
Department of Mathematical Engineering and Information Physics, the University of Tokyo, Tokyo, Japan Department of Complexity Science and Engineering, the University of Tokyo, Tokyo, Japan

Abstract

In contrast to PET and fMRI studies, color-selective responses from the ventro-occipital area have rarely been reported in MEG studies. We tried to minimize the stimulation to all areas in the visual system except the color-processing ones by using a color space based on psychophysical and physiological knowledge in order to maximize the signal-to-noise ratio for MEG responses from the ventro-occipital area. MEG obtained from long intermittent reversals (2.0–3.5 s) of isoluminant chromatic gratings showed two major peaks at the latencies of approximately 100 and 150 ms. The estimated location of the equivalent-current dipole for response at 100-ms latency was in the calcarine sulcus and that of the dipole for the response at 150 ms was in the collateral sulcus in the ventro-occipital area. The response around 150 ms was uniquely observed in MEG elicited by chromatic reversals. The average of lags between MEG responses from the calcarine sulcus and ventro-occipital area was 43 ms, which suggests sequential processing of color information across the visual cortices.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, Jr., C.L., Boulton, J.C., & Mullen, K.T. (1998). A nonlinear chromatic motion mechanism. Vision Research 38, 291302.CrossRefGoogle Scholar
Bartels, A. & Zeki, S. (2000). The architecture of the colour center in the human visual brain: New results and a review. European Journal of Neuroscience 12, 172193.CrossRefGoogle Scholar
Buchner, H., Weyen, U., Frackowiak, R.S., Romaya, J., & Zeki, S. (1994). The timing of visual evoked potential activity in human area V4. Proceedings of the Royal Society B (London) 257, 99104.CrossRefGoogle Scholar
Crognale, M.A., Switkes, E., Rabin, J., Schneck, M.E., Haegerstrom-Portnoy, G., & Adams, A.J. (1993). Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies. Journal of the Optical Society of America A 10, 18181825.CrossRefGoogle Scholar
Crognale, M.A., Switkes, E., & Adams, A.J. (1997). Temporal response characteristics of the spatiochromatic visual evoked potential: Nonlinearities and departures from psychophysics. Journal of the Optical Society of America A 14, 25952607.CrossRefGoogle Scholar
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.CrossRefGoogle Scholar
Dobkins, K.R. & Albright, T.D. (1994). What happens if it changes colour when it moves? The nature of chromatic input to macaque visual area MT. Journal of Neuroscience 8, 48544870.Google Scholar
Eisner, A. & MacLeod, D.I.A. (1981). Flicker photometric study of chromatic adaptation: Selective suppression of cone inputs by colored backgrounds. Journal of the Optical Society of America 71, 705718.CrossRefGoogle Scholar
Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C.R., Frackowiak, R.S.J., & Turner, R. (1995). Analysis offMRI time-series revisited. Neuroimage 2, 4553.CrossRefGoogle Scholar
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience 7, 555562CrossRefGoogle Scholar
Gerth, C., Delahunt, P.B., Crognale, M.A., & Werner, J.S. (2003). Topography of the chromatic pattern-onset VEP. Journal of Vision 3, 171182.CrossRefGoogle Scholar
Hämäläinen, M., Hari, R., Illumoniemi, R.J., Kuutila, J., & Lounasmaa, O.V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive study of the working human brain. Review of Modern Physics 65, 414497.Google Scholar
Hanazawa, A., Komatsu, H., & Murakami, I. (2000). Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey. European Journal of Neuroscience 12, 17531763.CrossRefGoogle Scholar
Kelly, D.H. (1983). Spatiotemporal variation of chromatic and achromatic contrast thresholds. Journal of the Optical Society of America 73, 742750.CrossRefGoogle Scholar
Koike, Y., Takeuchi, F., Hirata, Y., Kobayashi, T., & Kuriki, S. (1996). Neuromagnetic fields evoked by color alternation. Japanese Journal of Biomagnetism and Bioelectromagnetics 9, 4554. (written in Japanese)Google Scholar
Krauskopf, J., Williams, D.R., & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 11231131.CrossRefGoogle Scholar
Kremers, J., Lee, B.B., & Kaiser, P.K. (1992). Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic temporal modulation. Journal of the Optical Society of America A 9, 14771485.CrossRefGoogle Scholar
Kulikowski, J.J., Robson, A.G., & McKeefry, D.J. (1996). Specificity and selectivity of chromatic visual evoked potentials. Vision Research 36, 33973401.CrossRefGoogle Scholar
Lee, B.B., Martin, P.R., & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 404, 323347.CrossRefGoogle Scholar
Lueck, C.J., Zeki, S., Friston, K.J., Deiber, M.-P., Cope, P., Cunningham, V.J., Lammertsma, A.A., Kennard, C., & Frackowiak, R.S. (1989). The colour centre in the cerebral cortex of man. Nature 340, 386389.CrossRefGoogle Scholar
MacLeod, D.I.A. & Boynton, R.B. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.CrossRefGoogle Scholar
McKeefry, D.J. & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 22292242.CrossRefGoogle Scholar
McKeefry, D.J. (2002). The influence of stimulus chromaticity on the isoluminant motion-onset VEP. Vision Research 42, 909922.CrossRefGoogle Scholar
Maunsell, J.H.R., & Gibson J. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321343.Google Scholar
Merigan, W.H. & Maunsell, J.H.R. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.Google Scholar
Mullen, K. & Kingdom, F. (2002). Differential distribution of red–green and blue–yellow cone opponency across the visual field. Visual Neuroscience 19, 109118.CrossRefGoogle Scholar
Ogawa, S., Lee, T.M., Nayak, S., & Glynn, P. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Magnetic Resonance in Medicine 14, 6878.CrossRefGoogle Scholar
Ohtani, Y., Okamura, S., & Ejima, Y. (2002). Temporal summation of magnetic response to chromatic stimulus in the human visual cortex. Neuro Report 13, 16411644.Google Scholar
Rabin, J., Switkes, E., Crognale, M., Schneck, M.E., & Adams, A.J. (1994). Visual evoked potentials in three-dimentional color space: Correlates of spatio-chromatic processing. Vision Research 34, 26572671.CrossRefGoogle Scholar
Regan, D. & He, P. (1996). Magnetic and electrical responses to chromatic contrast in human. Vision Research 36, 118.Google Scholar
Sakai, K., Watanabe, E., Onodera, Y., Uchida, I., Kato, H., Yamamoto, E., Koizumi, H., & Miyashita, Y. (1995). Functional mapping of the human colour centre with echo-planar magnetic resonance imaging. Proceedings of Royal Society B (London) 261, 8998.CrossRefGoogle Scholar
Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Schall, J.D., & Levnthal, A.G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology 79, 32723278.Google Scholar
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.CrossRefGoogle Scholar
Tabuchi, H., Yokoyama, T., Shimogawara, M., Shiraki, K., Nagasaka, E., & Miki, T. (2002). Study of the visual evoked magnetic field with the m-sequence technique. Investigative Ophthalmology and Visual Science 43, 20452054.Google Scholar
Takeda, T., Morabito, M., Xiao, R., Hashimoto, K., & Endo H. (1996). Cerebral activity related to accommodation: A neuromagnetic study. Electroencephalography and Clinical Neurophysiology (Suppl.) 47, 283291.Google Scholar
Teich, M.C. (1989). Fractal character of the auditory neural spike train. IEEE Transactions on Biomedical Engineering 36 150160.CrossRefGoogle Scholar
Teich, M.C., Johnson, D.H., Kumar, A.R., & Turcott, R.G. (1990). Rate fluctuations and factional power law noise recorded from cells in the lower auditory pathway of the cat. Hearing Research 46, 4152.CrossRefGoogle Scholar
Uchikawa, K. & Yoshizawa, T. (1993). Temporal responses to chromatic and achromatic change inferred from temporal double-pulse integration, Journal of the Optical Society of America A 10, 16971705.Google Scholar
Talairach, J. & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. New York: Theime.
Valberg, A., Lee, B.B., Kaiser, P.K., & Kremers, J. (1992). Responses of macaque ganglion cells to movement of chromatic borders. Journal of Physiology 458, 579602.CrossRefGoogle Scholar
Wang, L., Barber, C., Kakigi, R., Kaneoke, Y., Okusa, T., & Wen, Y. (2001). A first comparison of the human multifocal visual evoked magnetic field and visual evoked potential. Neuroscience Letters 315, 1316.Google Scholar
Zeki, S.M. (1973). Colour coding in rhesus monkey prestriate cortex. Brain Research 53, 422427.CrossRefGoogle Scholar
Zeki, S. & Marini, L. (1998). Three cortical stages of colour processing in the human brain. Brain 121, 16691685.CrossRefGoogle Scholar