Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T13:28:15.933Z Has data issue: false hasContentIssue false

Unity and diversity in disorders of cognitive coordination

Published online by Cambridge University Press:  14 February 2005

William A. Phillips*
Affiliation:
Department of Psychology, University of Stirling, StirlingFK9 4LA, Scotland
Steven M. Silverstein*
Affiliation:
Center for Cognitive Medicine, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL60612

Abstract:

Studies of aging and autism as outlined by Bertone, Mottron, & Faubert (Bertone et al.) and by Faubert & Bertone suggest that disorders of cognitive coordination involving impairments of dynamic gestalt grouping and context-sensitivity may be common to several different disorders. We agree that such studies may shed light on these processes and their neuronal bases. However, we also emphasize that dynamic grouping and context-sensitivity can fail in various ways, and that, although the underlying pathophysiology may often involve NMDA-receptor malfunction, many different malfunctions are possible, and each of these may result from any one of a number of different etiologies.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Commentary onWilliam A. Phillips & Steven M. Silverstein (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. BBS 26(1):65–82.

References

Arieti, S. (1966) Schizophrenic cognition. In: Psychopathology of schizophrenia, ed. Hoch, P. H. & Zuubin, J., pp. 3748. Grave & Stratton. [AB]Google Scholar
Asarnow, J., Goldstein, M., Carlson, G., Perdue, S., Bates, S. & Keller, S. (1988) Childhood onset depressive disorders: A follow-up study of rates of rehospitalization and out of home placement among psychiatric inpatients. Journal of Affective Disorders 15:245–53. [rWAP]Google Scholar
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. (2001) The autistic spectrum quotient (AQ): Evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders 31:517. [rWAP]Google Scholar
Baxter, M. G., Lanthorn, T. H., Frick, K. M., Golski, S., Wan, R. Q. & Olton, D. S. (1994) D-cycloserine, a novel cognitive enhancer, improves spatial memory in aged rats. Neurobiology of Aging 15:207–13. [JF]Google Scholar
Bertone, A. & Faubert, J. (2003) How is complex second-order motion processed? Vision Research 43:2591–601. [JF]Google Scholar
Bertone, A., Mottron, L. & Faubert, J. (2004) Autism and schizophrenia: Similar perceptual consequence, different neurobiological etiology? Behavioral and Brain Sciences 27(4):592–93. [JF]Google Scholar
Bertone, A., Mottron, L., Jelenic, P. & Faubert, J. (2003) Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience 15:218–25. [AB]Google Scholar
Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L. & Stine, W. L. (2003) Visual recognition of biological motion is impaired in children with autism. Psychological Science 14:151–57. [AB]Google Scholar
Brock, J., Brown, C. C., Boucher, J. & Rippon, G. (2002) The temporal binding deficit hypothesis of autism. Development and Psychopathology 14:209–24. [rWAP]Google Scholar
Carlsson, M. L. (1998) Hypothesis: Is infantile autism a hypoglutamatergic disorder? Relevance of glutamate-serotonin interactions for pharmacotherapy. Journal of Neural Transmission 105:525–35. [AB, rWAP]Google Scholar
Carlsson, M. L., Martin, P., Nilsson, M., Sorensen, S. M., Carlsson, A., Waters, S. & Waters, N. (1999) The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist than dopamine agonist induced hyperactivity in mice. Journal of Neural Transmission 106:123–29. [rWAP]Google Scholar
Cavanagh, P. & Mather, G. (1989) Motion: The long and short of it. Spatial Vision 4:103–29. [JF]Google Scholar
Chen, Y., Nakayama, K., Levy, D., Matthysse, S. & Holzman, P. (2003) Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research 61:215–27. [AB]Google Scholar
Chubb, C., Olzak, L. & Derrington, A. (2001) Second-order processes in vision: Introduction. Journal of the Optical Society of America A 18:2175–78. [JF]Google Scholar
Cornelissen, P. L., Hansen, P. C., Gilchrist, I., Cormack, F., Essex, J. & Frankish, C. (1998) Coherent motion detection and letter position encoding. Vision Research 38:2181–91. [AB]Google Scholar
Demonet, J. F. & Habib, M. (2001) Developmental dyslexia: Contribution of modern neuropsychology. Revue Neurologie (Paris) 157:847–53. [rWAP]Google Scholar
Duggan, L. & Brylewski, J. (2002) Antipsychotic medication for those with both schizophrenia and learning disability (Cochrane Review). In: The Cochrane Library, Issue 1. Update Software. [rWAP]Google Scholar
Dykens, E., Volkmar, F. & Glick, M. (1991) Thought disorder in high-functioning autistic adults. Journal of Autism and Developmental Disorders 21:291301. [rWAP]Google Scholar
Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., Adamo, U. H. & Gottesman, I. (2000) Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York High-Risk Project. American Journal of Psychiatry 157:1416–22. [rWAP]Google Scholar
Faubert, J. (2002) Visual perception and aging. Canadian Journal of Experimental Psychology 56:164–76. [JF, WAP]Google Scholar
Faubert, J. & Bellefeuille, A. (2002) Aging effects on intra- and inter-attribute spatial frequency information for luminance, color, and working memory. Vision Research 42:369–78. [JF, rWAP]Google Scholar
Fish, B. (1977) Neurobiologic antecedents of schizophrenia in children: Evidence for an inherited congenital neurointegrative defect. Archives of General Psychiatry 34:1297–313. [rWAP]Google Scholar
Fish, B., Marcus, J., Hans, S., Auerbach, J. & Perdue, S. (1992) Infants at risk for schizophrenia: Sequelae of a genetic neurointegrative defect. Archives of General Psychiatry 49:221–35. [rWAP]Google Scholar
Frith, U. (1989) Autism: Explaining the enigma. Basil Blackwell. [AB]Google Scholar
Frith, U. (2003) Autism: Explaining the enigma, 2nd edition. Blackwell. [rWAP]Google Scholar
Gazzaley, A. H., Siegel., S. J., Kordower, J. H., Mufson, E. J. & Morrison, J. H. (1996) Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proceedings of the National Academy of Sciences USA 93:3121–25.[JF]Google Scholar
Gepner, B. & Mestre, D. R. (2002) Rapid visual-motion integration theory in autism. Trends in Cognitive Science 6:455. [AB]Google Scholar
Gerlai, J. & Gerlai, R. (2003) Autism: A large unmet medical need and a complex research problem. Physiology and Behavior 79:461–70. [rWAP]Google Scholar
Gerland, G. (1997) A real person: Life on the outside, trans. Tate, J.. Souvenir Press. [AB]Google Scholar
Gilmore, G. C., Wenk, H. E., Naylor, L. A. & Koss, E. (1994) Motion perception and Alzheimer's disease. Journal of Gerontology 49:5257. [AB]Google Scholar
Gradin, T. (1996) Thinking in pictures: And other reports from my life with autism. Vintage Books. [AB]Google Scholar
Habak, C. & Faubert, J. (2000) Larger effect of aging on the perception of higherorder stimuli. Vision Research 40:943–50. [AB, JF, rWAP]Google Scholar
Happé, F. (1997) Studying weak central coherence at low levels: Children with autism do not succumb to visual illusions. Journal of Child Psychology and Psychiatry 37:873–77. [rWAP]Google Scholar
Happé, F. (1999) Autism: Cognitive deficit or cognitive style? Trends in Cognitive Sciences 3:216–22. [AB]Google Scholar
Held, K., Antonijevic, I. A., Kunzel, H., Uhr, M., Wetter, T. C., Golly, I. C., Steiger, A. & Murck, H. (2002) Oral Mg(2_) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry 35:135–43. [JF]Google Scholar
Hemsley, D. R. (2003) Schizophrenic cognition: Taken out of context? Behavioral and Brain Sciences 26:91. [rWAP]Google Scholar
Herbert, A. M., Overbury, O., Singh, J. & Faubert, J. (2002) Aging and bilateral symmetry detection. Journal of Gerontology B: Psychological Sciences 57:241–45. [JF, rWAP]Google Scholar
Hunsinger, D. M., Nguyen, T., Zebraski, S. E. & Raffa, R. B. (2000) Is there a basis for novel pharmacotherapy for autism? Life Science 67:1667–82. [rWAP]Google Scholar
Izawa, R. & Yamamoto, S. (2002) Spatio-temporal disintegration of visual perception in schizophrenia as revealed by a novel cognitive task, the Searchlight Test. Schizophrenia Research 53:6774. [AB]Google Scholar
Javitt, D. C. (2003) Peeling the onion: NMDA dysfunction as a unifying model in schizophrenia. Behavioral and Brain Sciences 26:9394. [rWAP]Google Scholar
Kay, J., Floreano, D. & Phillips, W. A. (1998) Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11:117–40. [rWAP]Google Scholar
Knight, R. A., Manoach, D. S., Elliott, D. S. & Hershenson, M. (2000). Perceptual organization in schizophrenia: The processing of symmetrical configurations. Journal of Abnormal Psychology 109:575–87. [rWAP]Google Scholar
Knight, R. A. & Silverstein, S. M. (1998) The role of cognitive psychology in guiding research on cognitive deficits in schizophrenia. In: Origins and development of schizophrenia: Advances in experimental psychopathology, ed. Lenzenweger, M. & Dworkin, R. H., pp. 247–95. APA Press. [rWAP]Google Scholar
Konstantareas, M. M. & Hewitt, T. (2001) Autistic disorder and schizophrenia: Diagnostic overlaps. Journal of Autism and Developmental Disorders 31:1928. [rWAP]Google Scholar
Kumra, S., Jacobsen, L. K., Lenane, M., Zahn, T. P., Wiggs, E., Alaghband-Rad, J., Castellanos, X., Frazier, J. A., McKenna, K., Gordon, C. T., Smith, A., Hamburger, S. & Rapoport, J. L. (1998) “Multidimensionally impaired disorder” – Is it a variant of very early onset schizophrenia? Journal of the American Academy of Child and Adolescent Psychiatry 37:9199. [rWAP]Google Scholar
Massman, P. J., Delis, D. C., Filoteo, J. V., Butters, N., Salmon, D. P. & Demadura, T. L. (1993) Mechanisms of spatial impairment in Alzheimer's disease subgroups: Differential breakdown of directed attention to global-local stimuli. Neuropsychology 7:172–81. [rWAP]Google Scholar
Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H. & Plaisted, K. (2002) Journal of Child Psychology and Psychiatry 43:255–63. [AB]Google Scholar
Moghaddam, B. (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–84. [rWAP]Google Scholar
Mottron, L. & Belleville, S. (1993) A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities. Brain and Cognition 23:279309. [AB]Google Scholar
Mottron, L., Peretz, I. & Menard, E. (2000) Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry 41:1057–65. [rWAP]Google Scholar
Neumann, C. S., Grimes, K., Walker, E. F. & Baum, K. (1995) Developmental pathways to schizophrenia: Behavioral subtypes. Journal of Abnormal Psychology 104:558–66. [rWAP]Google Scholar
Nishida, S., Ledgeway, T. & Edwards, M. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research 37:2685–98. [JF]Google Scholar
Phillips, W. A., Capman, K. L. S. & Berry, P. D. (2003) Size perception is less context-sensitive in males. Perception 33:7986. [rWAP]Google Scholar
Phillips, W. A., Kay, J. & Smyth, D. (1995) The discovery of structure by multistream networks of processors with contextual guidance. Network 6:225–46. [rWAP]Google Scholar
Phillips, W. A. & Singer, W. (1997) In search of common foundations for cortical computation. Behavioral and Brain Sciences 20:657722. [rWAP]Google Scholar
Place, E. J. & Gilmore, G. C. (1980) Perceptual organization in schizophrenia. Journal of Abnormal Psychology 89:409–18. [AB]Google Scholar
Plaisted, K., O’Riordan, M. & Baron-Cohen, S. (1998) Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry 39:765–75. [rWAP]Google Scholar
Rabbitt, P. (1993) Does it all go together when it goes? The nineteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology 46A:385434. [rWAP]Google Scholar
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Mcinnes, L. & Rabbitt, P. (1998) A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society 4:474–90. [rWAP]Google Scholar
Ropar, D. & Mitchell, P. (1999) Are individuals with autism and Asperger's syndrome susceptible to visual illusions? Journal of Child Psychology and Psychiatry 40:1283–93. [rWAP]Google Scholar
Rosenzweig, E. S. & Barnes, C. A. (2003) Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition. Progress in Neurobiology 69:143–79. [JF]Google Scholar
Safarti, Y., Hardy-Baylé, M., Brunet, E. & Widlocher, D. (1999) Investigating theory of mind in schizophrenia: Influence of verbalization in disorganized and non-disorganized patients. Schizophrenia Research 37:183–90. [rWAP]Google Scholar
Sanderson, T. L., Best, J. J. K., Doody, G. A., Cunningham-Owens, D. G. & Johnstone, E. (1999) Neuroanatomy of comorbid schizophrenia and learning disability: A controlled study. The Lancet 354:1867–71. [rWAP]Google Scholar
Sara, M. & Faubert, J. (2000) Aging, perception, and visual short-term memory for luminance-defined form. Ophthalmic and Physiologic Optics 20:314–22. [JF, rWAP]Google Scholar
Segovia, G., Porras, A., del Arco, F. & Mora, F. (2001) Glutamatergic neurotransmission in aging: A critical perspective. Mechanisms of Aging and Development 122:129. [JF]Google Scholar
Silverstein, S. M., Bakshi, S., Chapman, R. M. & Nowlis, G. (1998) Perceptual organization of configural and nonconfigural visual patterns in schizophrenia: Effects of repeated exposure. Cognitive Neuropsychiatry 3:209–23. [rWAP]Google Scholar
Silverstein, S. M., Knight, R. A., Schwarzkopf, S. B., West, L. L., Osborn, L. M. & Kamin, D. (1996a) Stimulus configuration and context effects in perceptual organization in schizophrenia. Journal of Abnormal Psychology 105:410–20. [rWAP]Google Scholar
Silverstein, S. M., Kovacs, I., Corry, R. & Valone, C. (2000) Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophrenia Research 43:1120. [AB]Google Scholar
Silverstein, S. M., Matteson, S. & Knight, R. A. (1996b) Reduced top-down influence in auditory perceptual organization in schizophrenia. Journal of Abnormal Psychology 105:663–67. [rWAP]Google Scholar
Simmers, A. J. & Bex, P. J. (2001) Deficit of visual contour integration in dyslexia. Investigative Ophthalmology and Visual Science 42:2737–42. [rWAP]Google Scholar
Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J. & Wattam-Bell, J. (2000) Motion processing in autism: Evidence for a dorsal stream deficiency. NeuroReport 11:2765–67. [AB]Google Scholar
Talcott, J. B., Hansen, P. C., Assoku, E. L & Stein, J. F. (2000) Visual motion sensitivity in dyslexia: Evidence for temporal and energy integration deficits. Neuropsychologia 38:935–43. [AB]Google Scholar
Trick, G. L., Kaskie, B. & Steinman, S. B. (1994) Visual impairment in Parkinson's disease: Deficits in orientation and motion discrimination. Optometry and Vision Science 71:242–45. [AB]Google Scholar
Trick, G. L. & Silverman, S. E. (1991) Visual sensitivity to motion: Age-related changes and deficits in senile dementia of the Alzheimer's type. Neurology 41:1437–40. [AB, JF]Google Scholar
Uhlhaas, P. J. (2003) Gestalt perception in schizophrenia spectrum disorders. Ph.D. thesis, University of Stirling, U.K. [rWAP]Google Scholar
Watt, R. J. & Phillips, W. A. (2000) The function of dynamic grouping in vision. Trends in Cognitive Sciences 4:447–54. [AB, rWAP]Google Scholar
Wenk, G. L., Walker, L. C., Price, D. L. & Cork, L. C. (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiology of Aging 12:9398. [JF]Google Scholar
Wilson, H. R., Ferrera, V. P. & Yo, C. (1992) A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience 9:7997. [JF]Google Scholar