Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:08:00.330Z Has data issue: false hasContentIssue false

High-yield amplification of Cryptosporidium parvum in interferon γ receptor knockout mice

Published online by Cambridge University Press:  31 July 2008

J. von OETTINGEN
Affiliation:
National Reference Centre for Parasitology, Research Institute of the McGill University Heath Centre, Montreal General Hospital Research Institute, Montreal, Canada Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
M. NATH-CHOWDHURY
Affiliation:
National Reference Centre for Parasitology, Research Institute of the McGill University Heath Centre, Montreal General Hospital Research Institute, Montreal, Canada
B. J. WARD
Affiliation:
National Reference Centre for Parasitology, Research Institute of the McGill University Heath Centre, Montreal General Hospital Research Institute, Montreal, Canada
A. C. RODLOFF
Affiliation:
Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
M. J. ARROWOOD
Affiliation:
Centers for Disease Control and Prevention, Atlanta, USA
M. NDAO*
Affiliation:
National Reference Centre for Parasitology, Research Institute of the McGill University Heath Centre, Montreal General Hospital Research Institute, Montreal, Canada
*
*Corresponding author: Research Institute of the McGill University Heath Centre, Montreal General Hospital Research Institute, Room R3-137. 1650 Cedar Ave, Montreal, Quebec, CanadaH3G 1A4. Tel: +1 514 934 8347. E-mail: momar.ndao@mail.mcgill.ca

Summary

To date, large-scale production of Cryptosporidium parvum oocysts has only been achieved by amplification in neonatal calves and sheep. Many laboratories currently depend on supplies from external sources and store oocysts for prolonged periods which results in progressive loss of viability. Six to 8-week-old interferon γ receptor knockout (IFNγR-KO) mice on a C57BL/6 background were inoculated by gavage (2000 oocysts/animal). Fecal pellets were collected daily from 7 days post-infection (p.i.) up to 2 weeks p.i. Intestinal oocyst yield was assessed at days 11, 12 and 14 p.i. by homogenization of intestinal tissues. Ether extraction and one or more NaCl flotations were used to purify oocysts. Total recoveries averaged 2·6×106 oocysts/mouse from fecal material and 3·8×107 oocysts/mouse from intestinal tissues. Overall, 2·3×109 purified oocysts were obtained from 60 mice. Recovered oocysts were capable of sporulation and were shown to be infectious both in vitro and in vivo. Oocyst amplification was achieved in only 11–14 days with minimal expense. The simplicity of this method presents a practical alternative for the routine passage, maintenance and storage of C. parvum in biomedical laboratories.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arrowood, M. J. (2002). In vitro cultivation of cryptosporidium species. Clinical Microbiology Reviews 15, 390400.CrossRefGoogle ScholarPubMed
Arrowood, M. J. and Sterling, C. R. (1987). Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic percoll gradients. Journal of Parasitology 73, 314.CrossRefGoogle ScholarPubMed
Bukhari, Z. and Smith, H. V. (1995). Effect of three concentration techniques on viability of Cryptosporidium parvum oocysts recovered from bovine feces. Journal of Clinical Microbiology 33, 25922595.CrossRefGoogle ScholarPubMed
Campbell, L. D., Stewart, J. N. and Mead, J. R. (2002). Susceptibility to cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. Journal of Parasitology 88, 10141016.CrossRefGoogle ScholarPubMed
Chen, W., Harp, J. A. and Harmsen, A. G. (1993). Requirements for cd4+ cells and gamma interferon in resolution of established Cryptosporidium parvum infection in mice. Infection and Immunity 61, 39283932.CrossRefGoogle ScholarPubMed
Coulliette, A. D., Huffman, D. E., Slifko, T. R. and Rose, J. B. (2006). Cryptosporidium parvum: Treatment effects and the rate of decline in oocyst infectivity. Journal of Parasitology 92, 5862.CrossRefGoogle ScholarPubMed
Current, W. L. (1990). Techniques and laboratory maintenance of Cryptosporidium. In Cryptosporidiosis of Man and Animals (ed. Dubey, J. P., Speer, C. A. and Fayer, R.), pp. 3158. CRC Press, Boca Raton, FL, USA.Google Scholar
Fayer, R., Gasbarre, L., Pasquali, P., Canals, A., Almeria, S. and Zarlenga, D. (1998). Cryptosporidium parvum infection in bovine neonates: Dynamic clinical, parasitic and immunologic patterns. International Journal for Parasitology 28, 4956.CrossRefGoogle ScholarPubMed
Fayer, R., Nerad, T., Rall, W., Lindsay, D. S. and Blagburn, B. L. (1991). Studies on cryopreservation of Cryptosporidium parvum. Journal of Parasitology 77, 357361.CrossRefGoogle ScholarPubMed
Girouard, D., Gallant, J., Akiyoshi, D. E., Nunnari, J. and Tzipori, S. (2006). Failure to propagate Cryptosporidium spp. in cell-free culture. Journal of Parasitology 92, 399400.CrossRefGoogle ScholarPubMed
Goldstein, S. T., Juranek, D. D., Ravenholt, O., Hightower, A. W., Martin, D. G., Mesnik, J. L., Griffiths, S. D., Bryant, A. J., Reich, R. R. and Herwaldt, B. L. (1996). Cryptosporidiosis: An outbreak associated with drinking water despite state-of-the-art water treatment. Annals of Internal Medicine 124, 459468.CrossRefGoogle ScholarPubMed
Griffiths, J. K., Theodos, C., Paris, M. and Tzipori, S. (1998). The gamma interferon gene knockout mouse: A highly sensitive model for evaluation of therapeutic agents against Cryptosporidium parvum. Journal of Clinical Microbiology 36, 25032508.CrossRefGoogle Scholar
Hijjawi, N. S. (2003). In vitro cultivation and development of Cryptosporidium in cell culture. In Cryptosporidium: from Molecules to Disease (ed. Thompson, R. C. A., Armson, A. and Morgan-Ryan, U. M.), pp. 233253. Elsevier Science, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Hijjawi, N. S., Meloni, B. P., Ng'anzo, M., Ryan, U. M., Olson, M. E., Cox, P. T., Monis, P. T. and Thompson, R. C. A. (2004). Complete development of Cryptosporidium parvum in host cell-free culture. International Journal for Parasitology 34, 769.CrossRefGoogle ScholarPubMed
Kuczynska, E. and Shelton, D. R. (1999). Method for detection and enumeration of Cryptosporidium parvum oocysts in feces, manures, and soils. Applied and Environmental Microbiology 65, 28202826.CrossRefGoogle ScholarPubMed
Manabe, Y., Clark, D., Moore, R., Lumadue, J., Dahlman, H., Belitsos, P. and Chaisson, R. (1998). Cryptosporidiosis in patients with aids: Correlates of disease and survival. Clinical Infectious Diseases 27, 536542.CrossRefGoogle ScholarPubMed
Mead, J. R. and You, X. (1998). Susceptibility differences to Cryptosporidium parvum infection in two strains of gamma interferon knockout mice. Journal of Parasitology 84, 10451048.CrossRefGoogle ScholarPubMed
Medema, G. J., Schets, F. M., Teunis, P. F. and Havelaar, A. H. (1998). Sedimentation of free and attached Cryptosporidium oocysts and giardia cysts in water. Applied and Environmental Microbiology 64, 44604466.CrossRefGoogle ScholarPubMed
Meloni, B. and Thompson, R. (1996). Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. Journal of Parasitology 82, 757762.CrossRefGoogle ScholarPubMed
Molbak, K., Hojlyng, N., Gottschau, A., Sa, J., Ingholt, L. and da Silva, A. (1993). Cryptosporidiosis in infancy and childhood mortality in Guinea Bissau, West Africa. British Medical Journal 307, 417420.CrossRefGoogle ScholarPubMed
Newman, R., Sears, C., Moore, S., Nataro, J. W., Wuhib, T., Agnew, D. and Guerrant, R. (1999). Longitudinal study of Cryptosporidium infection in children in northeastern Brazil. The Journal of Infectious Diseases 180, 167175.CrossRefGoogle ScholarPubMed
Okhuysen, P., Chappell, C., Crabb, J., Sterling, C. and duPont, H. L. (1999). Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. The Journal of Infectious Diseases 180, 12751281.CrossRefGoogle ScholarPubMed
Petry, F., Robinson, H. A. and McDonald, V. (1995). Murine infection model for maintenance and amplification of Cryptosporidium parvum oocysts. Journal of Clinical Microbiology 33, 19221924.CrossRefGoogle ScholarPubMed
Robertson, L. J., Campbell, A. T. and Smith, H. V. (1992). Survival of Cryptosporidium parvum oocysts under various environmental pressures. Applied and Environmental Microbiology 58, 34943500.CrossRefGoogle ScholarPubMed
Stehr-Green, J. K., McCaig, L., Remsen, H. M., Rains, C. S., Fox, M. and Juranek, D. D. (1987). Shedding of oocysts in immunocompetent individuals infected with Cryptosporidium. The American Journal of Tropical Medicine and Hygiene 36, 338342.CrossRefGoogle ScholarPubMed
Theodos, C. M., Sullivan, K. L., Griffiths, J. K. and Tzipori, S. (1997). Profiles of healing and nonhealing Cryptosporidium parvum infection in c57bl/6 mice with functional b and t lymphocytes: The extent of gamma interferon modulation determines the outcome of infection. Infection and Immunity 65, 47614769.CrossRefGoogle Scholar
Ungar, B. (1990). Cryptosporidiosis in Humans (Homo sapiens). CRC Press, Boca Raton, FL, USA.Google Scholar
Upton, S. J., Tilley, M. and Brillhart, D. B. (1994). Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines. FEMS Microbiology Letters 118, 233.CrossRefGoogle ScholarPubMed
Weber, R., Bryan, R. T., Bishop, H. S., Wahlquist, S. P., Sullivan, J. J. and Juranek, D. D. (1991). Threshold of detection of Cryptosporidium oocysts in human stool specimens: Evidence for low sensitivity of current diagnostic methods. Journal of Clinical Microbiology 29, 13231327.CrossRefGoogle ScholarPubMed
Young, P. L. and Komisar, S. J. (2005). Impacts of viability and purification on the specific gravity of Cryptosporidium oocysts. Water Research 39, 33493359.CrossRefGoogle ScholarPubMed