Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T00:15:55.679Z Has data issue: false hasContentIssue false

Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder

Published online by Cambridge University Press:  07 July 2008

Geraldine Dawson*
Affiliation:
Autism Speaks
*
Address correspondence and reprint requests to: Geraldine Dawson, Autism Speaks, 1311 Lawrence Drive, Hillsborough, NC 27278; E-mail: gdawson@autismspeaks.org.

Abstract

Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is dedicated to Eric Schopler (1927–2006), mentor, advocate, and pioneer. This work was funded by grants from the National Institute of Child Health and Human Development (U19HD34565, P50HD066782, and R01HD-55741) and the National Institute of Mental Health (U54MH066399). Grateful acknowledgment is given to Ted Beauchaine, Joe Piven, and Lonnie Zwaigenbaum for their feedback on this paper.

References

Adrien, J. L., Lenoir, P., Martineau, J., Perrot, A., Hameury, L., Larmande, C., et al. (1993). Blind ratings of early symptoms of autism based upon family home movies. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 617626.Google Scholar
Ashwood, P., & Van de Water, J. (2004). A review of autism and the immune response. Clinical & Developmental Immunology, 11, 165174.Google Scholar
August, G. J., Stewart, M. A., & Tsai, L. (1981). The incidence of cognitive disabilities in the siblings of autistic children. British Journal of Psychiatry, 138, 416422.CrossRefGoogle ScholarPubMed
Auranen, M., Vanhala, R., Varilo, T., Ayers, K., Kempas, E., Ylisaukko-oja, T., et al. (2002). A Genomewide screen for autism-spectrum disorders: Evidence for a major susceptibility locus on chromosome 3q25–27. American Journal of Human Genetics, 71, 777790.CrossRefGoogle Scholar
Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 6377.Google Scholar
Bailey, A., Luthert, P., Dean, A., Harding, B, Janota, I., Montgomery, M., et al. (1998). A clinicopathological study of autism. Brain, 121, 889905.CrossRefGoogle ScholarPubMed
Bailey, A., Phillips, W., & Rutter, M. (1996). Autism: Towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. Journal of Child Psychology and Psychiatry, 37, 89126.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., & Juffer, F. (2003). Less is more: Meta-analysis of sensitivity and attachment interventions in early childhood. Psychological Bulletin, 129, 195215.Google Scholar
Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory–motor and social behaviours at 9–12 months of age. Journal of Autism and Developmental Disorders, 29, 213224.CrossRefGoogle ScholarPubMed
Barrett, S., Beck, J. C., Bernier, R., Bisson, E., Braun, T. A., Casavant, T. L., et al. (1999). An autosomal genomic screen for autism. American Journal of Medical Genetics, 88, 609615.Google ScholarPubMed
Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866874.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23, 183187.CrossRefGoogle ScholarPubMed
Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. l. R., Greenough, W. R., Beckel-Mitchener, A., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646663.CrossRefGoogle ScholarPubMed
Benaroya-Milshtein, N., Hollander, N., Apter, A., Kukulansky, T., Raz, N., Wilf, A., et al. (2004). Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. European Journal of Neuroscience, 20, 13411347.Google Scholar
Birnbrauer, J. S., & Leach, D. J. (1993). The Murdoch Early Intervention Program after 2 years. Behavior Change, 10, 6374.CrossRefGoogle Scholar
Black, L. S., deRegnier, R., Long, J., Georgieff, M. K., & Nelson, G., (2004). Electrographic imaging of recognition memory in 34–38 week gestation intrauterine growth restricted newborns. Experimental Neurology, 190, S72S83.Google Scholar
Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. K., & Bauman, M. L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. Journal of Autism and Developmental Disorders, 31, 537543.CrossRefGoogle ScholarPubMed
Bolton, P., MacDonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., et al. (1994). A case–control family history study of autism. Journal of Child Psychology and Psychiatry, 35, 877900.Google Scholar
Boucher, J., & Lewis, V. (1992). Unfamiliar face recognition in relatively able autistic children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 33, 843859.CrossRefGoogle ScholarPubMed
Boucher, J., Lewis, V., & Collis, G. (1998). Familiar face and voice matching and recognition in children with autism. Journal of Child Psychology and Psychiatry, 39, 171181.Google Scholar
Bredy, T. W., Humpartzoomian, R. A., Cain, D. P., & Meaney, M. J. (2003). Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience, 118, 571576.CrossRefGoogle ScholarPubMed
Brooks, R., & Meltzoff, A. N. (2005). The development of gaze following and its relation to language. Developmental Science, 8, 535543.Google Scholar
Bruner, J. (1983). Child's talk: Learning to use language. Oxford: Oxford University Press.Google Scholar
Bryson, S. E., McDermott, C., Rombough, V., Brian, J., & Zwaigenbaum, L. (2007). The Autism Observation Scale for Infants: Scale development and reliability data. Journal of Autism and Developmental Disorders.Google Scholar
Bryson, S. E., Zwaigenbaum, L., Brian, J., Roberts, W., Szatmari, P., Rombough, V., et al. (2007). A prospective case series of high-risk infants who developed autism. Journal of Autism and Developmental Disorders, 37, 1224.Google Scholar
Buxbaum, J. D., Silverman, J. M., Smith, C. J., Kilifarski, M., Reichert, J., Hollander, E., et al. (2001). Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. American Journal of Human Genetics, 68, 15141520.CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95, 53355340.CrossRefGoogle ScholarPubMed
Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 103, 1683416839.CrossRefGoogle ScholarPubMed
Cantor, R. M., Kono, N., Duvall, J. A., AlvarezRetuerto, A., Stone, J. L., Alarcon, M., et al. (2005). Replication of autism linkage: Fine-mapping peak at 17q21. American Journal of Human Genetics, 76, 10501056.CrossRefGoogle Scholar
Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453.CrossRefGoogle ScholarPubMed
Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428432.Google Scholar
Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews. Neuroscience, 3, 617628.Google Scholar
Caston, J., Devulder, B., Jouen, F., Lalonde, R., Delhaye-Bouchaud, N., & Mariani, J. (1999). Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Developmental Psychobiology, 35, 291303.Google Scholar
Chandler, S., Christie, P., Newson, E., & Prevezer, W. (2002). Developing a diagnostic and intervention package for 2- to 3-year-olds with autism: Outcomes of the frameworks for communication approach. Autism, 6, 4769.Google Scholar
Cheh, M. A., Millonig, J. H., Roselli, L. M., Ming, X., Jacobsen, E. Kamdar, S., et al. (2006). En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Research, 1116, 166176.Google Scholar
Cicchetti, D., & Cohen, D. J. (1995). Perspectives on developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and methods (pp. 322). New York: Wiley.Google Scholar
Cicchetti, D., & Curtis, W. J. (2006). The developing brain and neural plasticity: Implications for normality, psychopathology, and resilience. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Developmental neuroscience (Vol. 2, 2nd ed.). New York: Wiley.Google Scholar
Cohen, H., Amerine-Dickens, M., & Smith, T. (2006). Early intensive behavioral treatment: Replication of the UCLA model in a community setting. Journal of Development and Behavioral Pediatrics, 27, S145S155.Google Scholar
Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology, 7, 269278.Google Scholar
Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106111.CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337344.Google Scholar
Courchesne, E., Karns, C., Davis, H. R., Ziccardi, R., Carper, R., Tigue, Z., et al. (2001). Unusual brain growth patterns in early like in patients with autistic disorder: An MRI study. Neurology, 57, 245254.Google Scholar
Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153170.CrossRefGoogle ScholarPubMed
Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Van de Water, J. (2005). Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: A case-control study. Archives of Pediatrics and Adolescent Medicine, 159, 151157.Google Scholar
Croughan, M., Schembri, M., Bernstein, N., Chamberlain, N., Purcell, N., & Camarano, L. (2006). Maternal and childhool outcomes following infertility and infertility treatments. Paper presented at the American Society for Reproductive Medicine Annual Scientific Meeting, New Orleans, October 21–25, 2006.Google Scholar
Dawson, G. (Ed.). (1989). Autism: Nature, diagnosis and treatment. New York: Guilford Press.Google Scholar
Dawson, G., Carver, L., Meltzoff, A. N., Panagiotides, H., McPartland, J., & Webb, S. J. (2002). Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Development, 73, 700717.CrossRefGoogle ScholarPubMed
Dawson, G., & Faja, S. (in press). Autism spectrum disorders: A developmental perspective. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology. Hoboken, NJ: Wiley.Google Scholar
Dawson, G., Frey, K., Panagiotides, H., Osterling, J., & Hessl, D. (1997). Infants of depressed mothers exhibit atypical frontal brain activity: A replication and extension of previous findings. Journal of Child Psychology and Psychiatry, 38, 179186.CrossRefGoogle ScholarPubMed
Dawson, G., Frey, K., Panagiotides, H., Yamada, E., Hessl, D., & Osterling, J. (1999). Infants of depressed mothers exhibit atypical frontal electrical brain activity during interactions with mother and with a familiar, non-depressed adult. Child Development, 70, 10581066.CrossRefGoogle Scholar
Dawson, G., Hill, D., Galpert, L., Spencer, A., & Watson, L. (1990). Affective exchanges between young autistic children and their mothers. Journal of Abnormal Child Psychology, 18, 335345.Google Scholar
Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28, 479485.Google Scholar
Dawson, G., Munson, J., Estes, A., Osterling, J., McPartland, J., Toth, K., et al. (2002). Neurocognitive function and joint attention ability in young children with autism spectrum disorder versus developmental delay. Child Development, 73, 345358.Google Scholar
Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61, 458464.CrossRefGoogle ScholarPubMed
Dawson, G., & Osterling, J. (1997). Early intervention in autism: Effectiveness and common elements of current approaches. In Guralnick, E. (Ed.), The effectiveness of early intervention: Second generation research (pp. 307326). Baltimore, MD: Brookes.Google Scholar
Dawson, G., Osterling, J., Meltzoff, A. N., & Kuhl, P. (2000). Case study of the development of an infant with autism from birth to 2 years of age. Journal of Applied Developmental Psychology, 21, 299313.Google Scholar
Dawson, G., Sterling, L., & Faja, S. (in press). Autism spectrum disorders. In De Haan, J. & Gunnar, J. (Eds.), Handbook of developmental social neuroscience. New York: Guilford Press.Google Scholar
Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., et al. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology, 40, 271283.Google Scholar
Dawson, G., Webb, S., Carver, L., Panagiotides, H., & McPartland, J. (2004). Young children with autism show atypical brain responses to fearful versus neutral facial expressions. Developmental Science, 7, 340359.Google Scholar
Dawson, G., Webb, S. J., Estes, A., Munson, J., & Faja, S. (2008). Electrophysiological indices of altered emotional face processing in parents of children with autism. Manuscript submitted for publication.Google Scholar
Dawson, G., Webb, S., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: Insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27, 403424.CrossRefGoogle ScholarPubMed
Dawson, G., Webb, S., Schellenberg, G. D., Aylward, E., Richards, T., Dager, S., et al. (2002). Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. Development and Psychopathology, 14, 581611.Google Scholar
Dawson, G., Webb, S. J., Wijsman, E., Schellenberg, G., Estes, A., Munson, J., et al. (2005). Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: Implications for a model of abnormal development of social brain circuitry in autism. Development and Psychopathology, 17, 679697.CrossRefGoogle Scholar
Dawson, G., & Zanolli, K. (2003). Early intervention and brain plasticity in autism. In Bock, G. & Goode, J. (Eds.), Autism: Neural bases and treatment possibilities. Novartis Foundation Symposium 251 (pp. 266280). Chichester: Wiley.Google Scholar
de Haan, M., & Nelson, C. A. (1997). Recognition of the mother's face by 6-month-old infants: A neurobehavioral study. Child Development, 68, 187210.Google Scholar
DeFelipe, J., Hendry, S. H., Hashikawa, T., Molinari, M., & Jones, E. G. (1990). A microcolumnar structure of monkey cerebral cortex revealed by immunocyochimical studies of double bouquet cell axons. Neuroscience, 23, 622631.Google Scholar
Devlin, B., Cook, E. H. Jr., Coon, H., Dawson, G., Grigorenko, E. L., McMahon, W., et al. (2005). Autism and the serotonin transporter: The long and short of it. Molecular Psychiatry, 10, 11101116.CrossRefGoogle Scholar
Diamond, M. C., Rosenzweig, M. R., Bennett, E. L., Lindner, B., & Lyon, L. (1972). Effects of environmental enrichment and improverishment on rat cerebral cortex. Journal of Neurobiology, 3, 4764.Google Scholar
Drew, A., Baird, G., Baron-Cohen, S., Cox, A., Slonims, V., Wheelwright, S., et al. (2002). A pilot randomized control trial of a parent training intervention for pre-school children with autism: Preliminary findings and methodological challenges. European Child & Adolescent Psychiatry, 11, 266272.Google Scholar
Duffy, S. N., Craddock, K. J., Abel, T., & Nguyen, P. V. (2001). Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learning and Memory, 8, 2634.Google Scholar
Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 2527.Google Scholar
Elder, L., Dawson, G., Toth, K., Fein, D., & Munson, J. (2008). Head circumference as an early predictor of autism symptoms in young siblings of children with autism. Manuscript submitted for publication.Google Scholar
Escorihuela, R. M., Tobena, A., & Fernandez-Teruel, A. (1995). Environmental enrichment and postnatal handling prevent spatial learning deficits in aged hypoemotional (Roman high-avoidance) and hyperemotional (Roman low-avoidance) rats. Learning and Memory, 2, 4048.CrossRefGoogle ScholarPubMed
Faterni, S. H., Earle, J., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., et al. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophernia. Cellular and Molecular Neurobiology, 22, 2533.Google Scholar
Fatemi, S. H., & Halt, A. R. (2001). Altered levels of bcl2 and p53 proteins in parietal cortex reflect deranged apoptotic regulation in autism. Synapse, 42, 281284.CrossRefGoogle ScholarPubMed
Faverjon, S., Silveira, D. C., Fu, D. D., Cha, B. H., Akman, C., Hu, Y., et al. (2002). Beneficial effects of enriched environment following status epilepticus in immature rats. Neurology, 59, 13561364.CrossRefGoogle ScholarPubMed
Fenske, E. C., Zalenski, S., Krantz, P. J., & McClannahan, L. E. (1985). Age at intervention and treatment outcome for autistic children in a comprehensive intervention program. Analysis and Intervention in Developmental Disabilities, 5, 4958.Google Scholar
Floeter, M. K., & Greenough, W. T. (1979). Cerebellar plasticity: Modification of Purkinje cell structure by differential rearing in monkeys. Science, 206, 227229.Google Scholar
Folstein, S., & Rutter, M. (1977a). Genetic influences and infantile autism. Nature, 265, 726728.Google Scholar
Folstein, S., & Rutter, M. (1977b). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297321.Google Scholar
Foster, T. C., Gagne, J., & Massicotte, G. (1996). Mechanism of altered synaptic strength due to experience: Relation to long-term potentiation. Brain Research, 736, 243250.Google Scholar
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 22, 78407843.CrossRefGoogle ScholarPubMed
Friedman, S. D., Shaw, D. W., Artru, A. A., Dawson, G., Petropoulos, H., & Dager, S. R. (2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63, 786794.Google Scholar
Friedman, S. D., Shaw, D. W., Artru, A. A., Richards, T. L., Gardner, J., Dawson, G., et al. (2003). Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 60, 100107.Google Scholar
Garber, K. (2007). Autism's cause may reside in abnormalities at the synapse. Science, 317, 190191.CrossRefGoogle ScholarPubMed
Gepner, B., de Gelder, B., & de Schonen, S. (1996). Face processing in autistics: Evidence for a generalized deficit? Child Neuropsychology, 2, 123139.Google Scholar
Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Developmental Medicine and Child Neurology, 44, 296300.Google Scholar
Gingrich, B., Liu, Y., Cascio, C., Wang, Z., & Insel, T. R. (2000). Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles. Behavioral Neuroscience, 114, 173183.CrossRefGoogle ScholarPubMed
Glass, M., van Dellen, A., Blakemore, C., Hannan, A. J., & Faull, R. L. (2004). Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience, 123, 207212.CrossRefGoogle Scholar
Green, G., Brennan, L. C., & Fein, D. (2002). Intensive behavioral treatment for a toddler at high risk for autism. Behavior Modification, 26, 69102.CrossRefGoogle ScholarPubMed
Greenough, W. T., Volkmar, F. R., & Juraska, J. M. (1973). Effects of rearing complexity on dendritic branching in frontotemporal and temporal cortex of the rat. Experimental Neurology, 41, 371378.Google Scholar
Grelotti, D., Gauthier, I., & Schultz, R. (2002). Social interest and the development of cortical face specialization; what autism teaches us about face processing. Developmental Psychobiology, 40, 213225.Google Scholar
Hamm, R. J., Temple, M. D., O'Dell, D. M., Pike, B. R., & Lyeth, B. G. (1996). Exposure to environmental complexity promotes recovery of cognitive function after traumatic brain injury. Journal of Neurotrauma, 13, 4147.CrossRefGoogle Scholar
Harris, S. L., & Handleman, J. S. (2000). Age and IQ at intake as predictors of placement for young children with autism: A four- to six-year follow-up. Journal of Autism and Developmental Disorders, 30, 137142.Google Scholar
Harris, S. L., Handleman, J. S., Gordon, R., Kristoff, B., & Fuentes, F. (1991). Changes in cognitive and language functioning of preschool children with autism. Journal of Autism and Developmental Disorders, 21, 281290.Google Scholar
Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14, 63366353.Google Scholar
Haxby, J. V., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., & Martin, A. (1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22, 189199.Google Scholar
Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 13661376.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1947). The effects of early experience on problem-solving at maturity. American Psychologist, 2, 306307.Google Scholar
Herbert, M. R., Russo, J. P., Yang, S., Roohi, J., Blaxill, M., Kahler, S. G., et al. (2006). Autism and environmental genomics. Neuro Toxicology, 27, 671684.Google ScholarPubMed
Hollander, E., Bartz, J., Chaplin, W., Phillips, A., Sumner, J., Soorya, L., et al. (2007). Oxytocin increases retention of social cognition in autism. Biological Psychiatry, 61, 498503.Google Scholar
Hollander, E., Novotny, S., Hanratty, M., Yaffe, R., DeCaria, C. M., Aronowitz, B. R., et al. (2003). Oxytocin infusion reduces repetitive behavior in adults with autistic and Asperger's disorders. Neuropsychopharmacology, 28, 193198.Google Scholar
Hood, B. M., & Atkinson, J. (1990). Sensory visual loss and cognitive deficits in the selective attention system of normal infants and neurological impaired children. Development Medicine and Child Neurology, 32, 10671077.Google Scholar
Horowitz, B., Rumsey, J., Grady, C., & Rappoport, S. (1988). The cerebral metabolic landscape in autism: Intercorrelations of regional glucose utilization. Archives of Neurology, 4, 749755.Google Scholar
Howard, J. S., Sparkman, C. R., Cohen, H. G., Green, G., & Stanislaw, H. A., (2005). Comparison of intensive behavior analytic and eclectic treatments for young children with autism. Research in Developmental Disabilities, 26, 359383.Google Scholar
Ingersoll, B., Schreibman, L., & Stahmer, A. (2001). Brief report: Differential treatment outcomes for children with autistic spectrum disorder based on level of peer social avoidance. Journal of Autism and Developmental Disorders, 31, 343350.CrossRefGoogle ScholarPubMed
Insel, T. R., & Fernald, R. D. (2004). How the brain processes social information: Searching for the social brain. Annual Review of Neuroscience, 27, 697722.Google Scholar
Insel, T. R., & Hulihan, T. J. (1995). A gender-specific mechanism for pair bonding: Oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782789.Google Scholar
International Molecular Genetic Study of Autism Consortium (IMGSAC). (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Human Molecular Genetics, 7, 571578.Google Scholar
International Molecular Genetic Study of Autism Consortium (IMGSAC). (2001a). Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Human Molecular Genetics, 10, 973982.Google Scholar
International Molecular Genetic Study of Autism Consortium (IMGSAC). (2001b). A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p. American Journal of Human Genetics, 69, 570581.Google Scholar
Jacob, S., Brune, C. W. Carter, C. S., Leventhal, B. L., Lord, C., & Cook, E. H. (2007). Association of the oxytocin receptor gene (OXTR) in Caucasion children and adolescents with autism. Neuroscience Letters, 417, 69.CrossRefGoogle Scholar
Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 2729.Google Scholar
James, S. J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D. W., et al. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. American Journal of Clinical Nutrition, 80, 16111617.Google Scholar
Jocelyn, L. J., Casiro, O. G., Beattie, D., Bow, J., & Kneisz, J. (1998). Treatment of children with autism: A randomized controlled trial to evaluate a caregiver-based intervention program in community day-care centers. Journal of Developmental and Behavioral Pediatrics, 19, 326334.Google Scholar
Johansson, B. B., & Ohlsson, A. L. (1996). Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Experimental Neurology, 139, 322327.Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews. Neuroscience, 6, 766774.Google Scholar
Johnson, M., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., et al. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17, 599619.Google Scholar
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.Google Scholar
Kampe, K., Frith, C., Dolan, R., & Frith, U. (2001). Attraction and gaze—The reward value of social stimuli. Nature, 413, 589.CrossRefGoogle Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 43024311.Google Scholar
Kasari, C., Sigman, M., Mundy, P., & Yirmiya, N. (1990). Affective sharing in the context of joint attention interactions of normal, autistic, and mentally retarded children. Journal of Autism & Developmental Disorders, 20, 87100.Google Scholar
Kelly, S. J., Day, N., & Streissguth, A. P. (2000). Effects of prenatal alcohol exposure on social behavior in humans and other species. Neurotoxicology and Teratology 22, 143149.Google Scholar
Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57, 645652.Google Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493495.CrossRefGoogle Scholar
Kim, S. J., Young, L. J., Gonen, D., Veenstra-VanderWeele, J., Courchesne, R., Courchesne, E., et al. (2002). Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry, 7, 503507.Google Scholar
Klin, A. (1991). Young autistic children's listening preferences in regard to speech: A possible characterization of the symptom of social withdrawal. Journal of Autism and Developmental Disorder, 21, 2942.Google Scholar
Klin, A. (1992). Listening preferences in regard to speech in four children with developmental disabilities. Journal of Child Psychology and Psychiatry, 33, 763769.Google Scholar
Klin, A., Sparrow, S. S., deBildt, A., Cicchetti, D. V., Cohen, D. J., & Volkmar, F. R. (1999). A normed study of face recognition in autism and related disorders. Journal of Autism and Developmental Disorders, 29, 499508.Google Scholar
Kolb, B., & Gibb, R. (1991). Environmental enrichment and cortical injury: Behavioral and anatomical consequences of frontal cortex lesions. Cerebral Cortex, 1, 189198.CrossRefGoogle ScholarPubMed
Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., et al. (2005). Experience induces structural and biochemical changes in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 1747817482.Google Scholar
Kuehn, B. M. (2007). CDC: Autism spectrum disorders common. Journal of the American Medical Association, 297, 940.Google Scholar
Kuemerle, B., Zanjani, H., Joyner, A., & Herrup, K. (1997). Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. Journal of Neuroscience 17, 78817889.Google Scholar
Kuhl, P. (2007). Is speech learning “gated” by the social brain? Developmental Science, 10, 110120.Google Scholar
Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2004). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Developmental Science, 7, 1930.Google Scholar
Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological evidence. Developmental Science, 8, 112.Google Scholar
Kuhl, P., Tsao, F., & Liu, H. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100, 90969101.Google Scholar
LaBar, K. S. (2007). Beyond fear: Emotional memory mechanisms in the human brain. Current Directions in Psychological Science, 16, 173177.Google Scholar
Lamb, J. A., Barnby, G., Bonora, E., Sykes, N., Bacchelli, E., Blasi, F., et al. (2005). Analysis of IMGSAC autism susceptibility loci: Evidence for sex limited and parent of origin specific effects. Journal of Medical Genetics, 42, 132137.Google Scholar
Landa, R., Folstein, S. E., & Isaacs, C. (1991). Spontaneous narrative–discourse performance of parents of autistic individuals. Journal of Speech and Hearing Research, 34, 13391345.Google Scholar
Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry, 47, 629638.CrossRefGoogle ScholarPubMed
Landa, R., Holman, K. C., & Garrett-Mayer, E. (2007). Social and communication development in toddlers with early and alter diagnosis of autism spectrum disorders. Archives of General Psychiatry, 64, 853864.Google Scholar
Landa, R., Piven, J., Wzorek, M. M., Gayle, J. O., Chase, G. A., & Folstein, S. E. (1992). Social language use in parents of autistic individuals. Psychological Medicine, 22, 245254.Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2001). Neuroperception. Early visual experience and face processing. Nature, 410, 890.Google Scholar
Lewis, M. H. (2004). Environmental complexity and central nervous system development and function. Mental Retardation and Developmental Disabilities Research Reviews, 10, 9195.Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.Google Scholar
Liu, J. J., Nyholt, D. R., Magnussen, P., Parano, E., Pavone, P., Geschwind, D., et al. (2001). A genomewide screen for autism susceptibility loci. American Journal of Human Genetics, 69, 327340.Google Scholar
Lovaas, O. I. (1987). Behavioral treatment and normal educational and intellectual functioning in young autistic children. Journal of Consulting and Clinical Psychology, 55, 39.CrossRefGoogle ScholarPubMed
Lucki, I. (1998). The spectrum of behaviors influence by serotonin. Biological Psychiatry, 44, 151162.Google Scholar
Maestro, S., Muratori, F., Cavallaro, M. C., Pei, F., Stern, D., Golse, B., et al. (2002). Attentional skills during the first 6 months of age in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 12391245.Google Scholar
Mahoney, G., & Perales, F. (2003). Using relationship-focused intervention to enhance the social-emotional functioning of young children with autism spectrum disorders. Topics in Early Childhood Special Education, 23, 7789.Google Scholar
McCauley, J. L., Li, C., Jiang, L., Olson, L. M., Crockett, G., Gainer, K., et al. (2005). Genome-wide and ordered-subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Medical Genetics, 6, 1.Google Scholar
McCleery, J. P., Allman, E., Carver, L. J., & Dobkins, K. R. (2007). Abnormal magnocellular pathway visual processing in infants at risk for autism. Biological Psychiatry.Google Scholar
McCleery, J. P., Burner, K., Dobkins, K., & Carver, L. (2006, June). Neural correlates of face processing in infant siblings of children with autism. Paper presented at the International Meeting for Autism Research, Montreal.Google Scholar
McEachin, J. J., Smith, T., & Lovaas, O. I. (1993). Long-term outcome for children with autism who received early intensive behavioral treatment. American Journal of Mental Retardation, 97, 359372; discussion 373–391.Google Scholar
McGee, G. G., Morrier, M. J., & Daly, T. (1999). An incidental teaching approach to early intervention for toddlers with autism. Journal of the Association for Persons with Severe Handicaps, 24, 133146.Google Scholar
McPartland, J., Dawson, G., Webb, S., & Panagiotides, H. (2004). Event-related brain potentials reveal anomalies in temporal processing of faces in autism. Journal of Child Psychiatry and Psychology, 45, 1235.Google Scholar
Miles, J. H., & Takahashi, T. N. (2007). Lack of association between Rh status, Rh immune blogulin in pregnancy and autism. American Journal of Medical Genetics, 143 A, 12971407.Google Scholar
Millen, K. J., Wurst, W. W., Herrup, K., & Joyner, A. L. (1994). Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse engrailed-2 mutants. Development 120, 695706.Google Scholar
Mitchell, S., Brian, J., Zwaigenbaum, L., Roberts, W., Szatmari, P., Smith, I., et al. (2006). Early language and communication development of infants later diagnosed with autism spectrum disorder. Journal of Developmental Behavioral Pediatrics, 27, S69S78.Google Scholar
Modahl, C., Green, L., Fein, D., Morris, M., Waterhouse, L., Feinstein, C., et al. (1998). Plasma oxytocin levels in autistic children. Biological Psychiatry, 43, 270277.Google Scholar
Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Dawson, G., Bernier, R., Dunn, M., et al. (2006). Familial autoimmune thyroid disease as a risk factor for regression in children with autism spectrum disorder: A CPEA study. Journal of Autism and Developmental Disorders, 36, 317324.Google Scholar
Mullen, E. M. (1995). Mullen Scales of Early Learning. Circle Pines, MN: American Guidance Service, Inc.Google Scholar
Mundy, P., & Neal, R. (2001). Neural plasticity, joint attention and a transactional social-orienting model of autism (Vol. 23). San Diego, CA: Academic Press.Google Scholar
Munson, J., Dawson, G., Abbott, R., Faja, S., Webb, S. J., Friedman, S. D., et al. (2006). Amygdalar volume and behavioral development in autism. Archives of General Psychiatry, 63, 686693.Google Scholar
Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2008). Spontaneous EEG coherence in adults with autism spectrum disorder: global under-connectivity and local over-connectivity. Manuscript sumitted for publication.Google Scholar
Narayan, S., Moyes, B., & Wolff, S. (1990). Family characteristics of autistic children: A further report. Journal of Autism and Developmental Disorders, 20, 557559.Google Scholar
National Research Council. (2001). Educating children with autism. Washington, DC: National Academy Press.Google Scholar
Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10, 318.CrossRefGoogle Scholar
Nelson, C. A., & De Haan, M. (1996). Neural correlates of infants' visual responsiveness to facial expressions of emotion. Developmental Psychobiology, 29, 577595.Google Scholar
Newschaffer, C. J., Croen, L. A., Daniels, J., Giarelli, E., Grether, J. K., Levy, S. E., et al. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 235258.Google Scholar
Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews. Neuroscience, 7, 697709.Google Scholar
O'Connor, M. J., Sigman, M., & Brill, N. (1987). Disorganization of attachment in relation to maternal alcohol consumption. Journal of Consulting and Clinical Psychology, 55, 831836.Google Scholar
Osterling, J., & Dawson, G. (1994). Early recognition of children with autism: A study of first birthday home video tapes. Journal of Autism and Developmental Disorders, 24, 247257.Google Scholar
Osterling, J. A., Dawson, G., & Munson, J. A. (2002). Early recognition of 1-year old infants with autism spectrum disorder versus mental retardation. Development and Psychopathology, 14, 239251.Google Scholar
Palomo, R., Belinchón, M., & Ozonoff, S. (2006). Autism and family home movies: A comprehensive review. Developmental and Behavioral Pediatrics, 27, S59S68.Google Scholar
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., et al. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America, 102, 52975300.Google Scholar
Patternson, P. H. (2002). Maternal infection: Window on neuroimmune interactions in fetal brain development and mental illness. Current Opinions in Neurobiology, 12, 115118.Google Scholar
Pedersen, C. A., Caldwell, J. O., Walker, C., Ayers, G., & Mason, G. A. (1994). Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behavioral Neuroscience, 108, 11631171.Google Scholar
Peters, A., & Sethares, G. (1997). The organization of double Bouqyet cells in monkey striate cortex. Journal of Neurocytology, 26, 77797797.Google Scholar
Pham, T. M., Winblad, B., Granholm, A., & Mohammed, A. H. (2002). Environmental influences on brain neurotrophins in rats. Pharmacology, Biochemistry, and Behavior, 73, 167175.Google Scholar
Philippe, A., Martinez, M., Guilloudbataille, M., Gillberg, C., Rastam, M., Sponheim, E., et al. (1999). Genome-wide scan for autism susceptibility genes. Human Molecular Genetics, 8, 805812.Google Scholar
Pickett, J., & London, E. (2005). The neuropathology of autism: A review. Journal of Neuropathology and Experimental Neurology, 64, 925935.Google Scholar
Pickles, A., Bolton, P., Macdonald, H., Bailey, A., Le Couteur, A., Sim, C-H., et al. (1995). Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. American Journal of Human Genetics, 57, 717726.Google Scholar
Pierce, K., Muller, R. A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform “face area” in autism: Evidence from functional MRI. Brain, 124, 20592073.Google Scholar
Poehlmann, J., & Fiese, B. H. (2003). The interaction of maternal and infant vulnerabilities on developing attachment relationships. Developmental Psychopathology, 13, 111.Google Scholar
Powell, S. B., Newman, H. A., McDonald, T. A., Bugenhagen, P., & Lewis, M. H. (2000). Development of spontaneous stereotyped behavior in deer mice: Effects of early and late exposure to a more complex environment. Developmental Psychobiology, 37, 100108.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Rampon, C., Jiang, C. H., Dong, H., Tang, Y. P., Lockhart, D. J., Schultz, P. G., et al. (2000). Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 1288012884.Google Scholar
Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 19.Google Scholar
Restivo, L., Ferrari, F., Passino, E., Sgobio, C., Bock, J., Oostra, B. A., et al. (2005). Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 102, 1155711562.Google Scholar
Rippon, G., Brock, J., Brown, C., & Boucher, J. (in press). Disordered connectivity in the autistic brain: Challenges for the new psychophysiology. International Journal of Psychophysiology.Google Scholar
Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., et al. (1999). A genomic screen of autism: Evidence for a multilocus etiology. American Journal of Human Genetics, 65, 493507.Google Scholar
Ritvo, E. R., Freeman, B. J., Mason-Brothers, A., Mo, A., & Ritvo, A. M. (1985). Concordance for the syndrome of autism in 40 pairs of afflicted twins. American Journal of Psychiatry, 142, 7477.Google Scholar
Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., et al. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. American Journal of Psychiatry, 143, 862866.Google Scholar
Ritvo, E. R., Jorde, L. B., Mason-Brothers, A., Freeman, B. J., Pingree, C., Jones, M. B., et al. (1989). The UCLA–University of Utah epidemiologic survey of autism: Recurrence risk estimates and genetic counseling. American Journal of Psychiatry, 146, 10321036.Google Scholar
Robins, D. L., Fein, D., Barton, M. L., & Green, J. A. (2001). The Modified Checklist for Autism in Toddlers: The modified checklist for autism in toddlers: An initial study investigating the early detection of autism and pervasive developmental disorders. Journal of Autism and Developmental Disorders, 31, 131144.CrossRefGoogle ScholarPubMed
Rodier, P. M., Ingram, J. L., Tisdale, B., & Croog, V. J. (1997). Linking etiologies in humans and animal models: Studies of autism. Reproductive Toxicology, 11, 417422.Google Scholar
Rogers, S., Herbison, J., Lewis, H., Pantone, J., & Reis, K. (1986). An approach for enhancing the symbolic, communicative, and interpersonal functioning of young children with autism and severe emotional handicaps. Journal of the Division of Early Childhood, 10, 135148.Google Scholar
Rogers, S., & Lewis, H. (1989). An effective day treatment model for young children with pervasive developmental disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 28, 207214.Google Scholar
Rogers, S. J. (1998). Neuropsychology of autism in young children and its implications for early intervention. Mental Retardation and Developmental Disabilities Research Reviews, 4, 104112.Google Scholar
Rogers, S. J., Hall, T., Osaki, D., Reaven, J., & Herbison, J. (2000). The Denver model: A comprehensive, integrated educational approach to young children with autism and their families. In Handleman, J. S. & Harris, S. L. (Eds.), Preschool education programs for children with autism (2nd ed., pp. 95133). Austin, TX: Pro-Ed Corporation.Google Scholar
Rolf, L. H., Haarmann, F. Y., Grotemeyer, K. H., & Kehrer, H. (1993). Serotonin and amino acid content in platelets of autistic children. Acta Psychiatry Scandinavia, 87, 312316.Google Scholar
Roman, G. C. (in press). Autism: Transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. Journal of the Neurological Sciences.Google Scholar
Rutter, M., Bailey, A., Bolton, P., LeCouteur, A (1994). Autism and known medical conditions: Myth and substance. Journal of Child Psychology and Psychiatry, 35, 311322.CrossRefGoogle ScholarPubMed
Sacco, R., Militerni, R., Frolli, A., Bravaccio, C., Gritti, A., Elia, M., et al. (2007). Clinical, morphological, and biochemical correlates of head circumference in autism. Biological Psychiatry.Google Scholar
Sackett, G. P. (1972). Prospects for research on schizophrenia. 3. Neurophysiology. Isolation-rearing in primates. Neuroscience Research Program Bulletin, 10, 388392.Google Scholar
Sallows, G. O., & Graupner, T. D. (2005). Intensive behavioral treatment for children with autism: Four-year outcome and predictors. American Journal of Mental Retardation, 110, 417438.Google Scholar
Schellenberg, G., Dawson, G., Sung, Y. J., Estes, A., Munson, J., Rosenthal, E., et al. (2006). Evidence for multiple loci from a genome scan of autism kindred: A CPEA study. Molecular Psychiatry, 11, 10491060.Google Scholar
Schneider, T., Turczak, J., & Przewlocki, R. (2006). Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacology, 31, 3646.Google Scholar
Schoenbaum, G., Setlow, B., Saddoris, M. P., & Gallagher, M. (2003). Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron, 39, 731733.Google Scholar
Schrijver, N. C., Bahr, N. I., Weiss, I. C., & Wurbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology, Biochemistry, and Behavior, 73, 209224.Google Scholar
Schultz, R. T., Gauthier, I., Klin, A., Fulbright, R. K., Anderson, A. W., Volkmar, F. R., et al. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Archives of General Psychiatry, 57, 331340.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127.Google Scholar
Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. Journal of Neuroscience, 26, 76747679.Google Scholar
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445449.Google Scholar
Shao, Y. J., Wolpert, C. M., Raiford, K. L., Menold, M. M., Donnelly, S. L., Ravan, S. A., et al. (2002). Genomic screen and follow-up analysis for autistic disorder. American Journal of Medical Genetics, 114, 99105.Google Scholar
Sheinkopf, S. J., & Siegel, B. (1998). Home-based behavioral treatment of young children with autism. Journal of Autism and Developmental Disorders, 28, 1523.Google Scholar
Sherer, M. R., & Schreibman, L. (2005). Individual behavioral profiles and predictors of treatment effectiveness for children with autism. Journal of Consulting and Clinical Psychology, 73, 114.Google Scholar
Sigman, M., & Ruskin, E. (1999). Change and continuity in the social competence of children with Autism, Down syndrome, and developmental delays. Monographs of the Society for Research in Child Development.Google Scholar
Siller, M., & Sigman, M. (2002). The behaviors of parents of children with autism predict the subsequent development of their children's communication. Journal of Autism and Developmental Disorders, 32, 7789.Google Scholar
Skuse, D. H. (2000). Behavioural neuroscience and child psychopathology: Insights from model systems. Journal of Child Psychology Psychiatry, 41, 331.Google Scholar
Smalley, S. L., Asarnow, R. F., & Spence, A. (1988). Autism and genetics. Archives of General Psychiatry, 45, 953961.Google Scholar
Smith, M., Rogers, S., & Dawson, G. (2008). The Early Start Denver Model: A comprehensive early intervention approach for toddlers with autism. In Handleman, J. S. & Harris, S. L. (Eds.), Preschool education programs for children with autism (3rd ed.) Austin, TX: Pro-Ed Corporation.Google Scholar
Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patternson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27, 1069510702.Google Scholar
Smith, T., Groen, A. D., & Wynn, J. W. (2000). Randomized trial of intensive early intervention for children with pervasive developmental disorder. American Journal of Mental Retardation, 105, 269285.Google Scholar
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184192.Google Scholar
Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. Journal of Child Psychology and Psychiatry, 30, 405416.Google Scholar
Stone, J. L., Merriman, B., Cantor, R. M., Yonan, A. L., Gilliam, T. C., Geschwind, D. H., et al. (2004). Evidence for sex-specific risk alleles in autism spectrum disorder. American Journal of Human Genetics, 75, 11171123.Google Scholar
Sung, Y. J., Dawson, G., Munson, J., Estes, A., Schellenberg, G. D., & Wijsman, E. M. (2005). Genetic investigation of quantitative traits related to autism: Use of multivariate polygenic models with ascertainment adjustment. American Journal of Human Genetics, 76, 6881.Google Scholar
Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319328.Google Scholar
Thatcher, R. W. (1994). Cyclic cortical reorganization: Origins of human cognitive development. In Fischer, G. D. K. (Ed.), Human behavior and the developing brain (pp. 232266). New York: Guilford Press.Google Scholar
Thatcher, R. W., Krause, P. J., & Hrybyk, M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64, 123143.Google Scholar
Thatcher, R. W., Walker, R. A., & Guidice, S. (1987). Human cerebral hemispheres develop at different rates and age. Science, 236, 11101113.Google Scholar
Toth, K., Dawson, G., Meltzoff, A., Greenson, J., & Fein, D. (2007). Early social, imitation, play, and language abilities of young non-autistic siblings of children with autism. Journal of Autism and Developmental Disorders, 37, 145157.Google Scholar
Toth, K., Munson, J., Meltzoff, A., & Dawson, G. (2006). Early predictors of language growth in young children with autism: Joint attention, imitation, and toy play. Journal of Autism and Developmental Disorders, 36, 9931005.Google Scholar
Tronick, E. Z., & Field, T. (1986). Maternal depression and infant disturbance. San Francisco, CA: Jossey–Bass.Google Scholar
Tsuchiya, K. J., Hashimoto, K., Iwata, Y., Tsujii, M., Sekine, Y., Sugihara, G., et al. (2007). Decreased serum levels of platelet-endothelial adhesion molecule (pecam-1) in subjects with high-functioning autism: A negative correlation with head circumference at birth. Biological Psychiatry.Google Scholar
Turner, C. A., Lewis, M. H., & King, M. A. (2003). Environmental enrichment: Effects on stereotyped behavior and dendritic morphology. Developmental Psychobiology, 43, 2027.Google Scholar
Turner, C. A., Yang, M. C., & Lewis, M. H. (2002). Environmental enrichment: Effects on stereotyped behavior and regional neuronal metabolic activity. Brain Research, 938, 1521.Google Scholar
Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57, 6781.CrossRefGoogle ScholarPubMed
Veenstra-VanderWeele, J., & Cook, E. H. Jr. (2004). Molecular genetics of autism spectrum disorder. Molecular Psychiatry, 9, 819832.Google Scholar
Wassink, T. H., Hazlett, H., Mosconi, M., Epping, E., Arndt, S., Schellenberg, G., et al. (2007). Cerebral cortical gray matter overgrowth in autism is associated with functional variation of the serotonin transporter gene. Archives of General Psychiatry.Google Scholar
Waterhouse, L., Fein, D., & Modahl, C. (1996). Neurofunctional mechanisms in autism. Psychological Review, 103, 457489.Google Scholar
Watson, L. R., Baranek, G. T., Crais, E. R., Steven Reznick, J., Dykstra, J., & Perryman, T. (2007). The first year inventory: Retrospective parent responses to a questionnaire designed to identify one-year-olds at risk for autism. Journal of Autism and Developmental Disorders, 37, 1, 4961.Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seck, J. R. et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Webb, S. J., Dawson, G., Bernier, R., & Panagiotides, H. (2006). ERP evidence of atypical face processing in young children with autism. Journal of Autism and Developmental Disorders, 36, 881890.Google Scholar
Webb, S. J., Long, J., & Nelson, C. A. (2005). A longitudinal investigation of visual event-related potentials in the first year of life. Developmental Science, 8, 605616.CrossRefGoogle ScholarPubMed
Webb, S. J., Nalty, T., Munson, J., Brock, C., Abbott, R., & Dawson, G. (in press). Rate of head circumference growth as a function of autism diagnosis and history of autistic regression. Journal of Child Neurology.Google Scholar
Werner, E., & Dawson, G. (2005). Validation of the phenomenon of autistic regression using home videotapes. Archives of General Psychiatry, 62, 889895.Google Scholar
Werner, E., Dawson, G., Osterling, J., & Dinno, N. (2000). Brief report: Recognition of autism spectrum disorder before one year of age: A retrospective study based on home videotapes. Journal of Autism and Developmental Disorders, 30, 157162.Google Scholar
Winslow, J., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545548.Google Scholar
Witt, D. M., Winslow, J. T., & Insel, T. R. (1992). Enhanced social interactions in rats following chronic, centrally infused oxytocin. Pharmacology, Biochemistry and Behavior, 43, 855861.Google Scholar
Wolff, S., Narayan, S., & Moyes, B. (1988). Personality characteristics of parents of autistic children: A controlled study. Journal of Child Psychiatry, 29, 143153.Google Scholar
Wong, R., & Jamieson, J. L. (1968). Infantile handling and the facilitation of discrimination and reversal learning. Quarterly Journal of Experimental Psychology, 20, 197199.Google Scholar
Wu, S., Jia, M. Ruan, Y., Liu, J., Guo, Y., Chuang, M., et al. (2005). Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biological Psychiatry, 58, 7477.Google Scholar
Yehuda, R., Engel, S. M., Brand, S. R., Seckl, J., Marcus, S. M., & Berkowitz, G. S. (2005). Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. Journal of Clinical Endocrinology and Metabolism, 90, 41154118.Google Scholar
Yirmiya, N., Gamliel, I., Pilowsky, T., Feldman, R., Baron-Cohen, S., & Sigman, M. (2006). The development of siblings of children with autism at 4 and 14 months: Social engagement, communication, and cognition. Journal of Child Psychology and Psychiatry, 47, 511523.Google Scholar
Yonan, A. L., Alarcon, M., Cheng, R., Magnusson, P. K. E., Spence, S. J., Palmer, A. A., et al. (2003). A genomewide screen of 345 families for autism-susceptibility loci. American Journal of Human Genetics, 73, 886897.Google Scholar
Young, D., Lawlor, P. A., Leone, P., Dragunow, M., & During, M. L. (1999). Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Medicine, 5, 448453.Google Scholar
Zhao, X., Leotta, A., Kustanovich, V., Lajonchere, C., Geschwind, D. H., Law, K., et al. (2007). A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Science of the United States of America, 104, 1283112836.Google Scholar
Zimmerman, A., Connors, S. L., Matteson, K. J., Lee, L.-C., Singer, H. S., Castaneda, J. A., et al. (2007). Maternal antibrain antibodies in autism. Brain, Behavior, and Immunity, 21, 351357.Google Scholar
Zoghbi, H. Y. (2003). Postnatal neurodevelopmental disorders: Meeting at the synapse? Science, 302, 826830.Google Scholar
Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143152.Google Scholar
Zwaigenbaum, L., Thurm, A., Stone, W., Baranek, G., Bryson, S., Iverson, J., et al. (2007). Studying the emergence of autism spectrum disorders in high-risk infants: Methodological and practical issues. Journal of Autism and Developmental Disorders, 37, 466480.Google Scholar